
International Journal of Advanced Network, Monitoring and Controls Volume 09, No.02, 2024

DOI: 10.2478/ijanmc-2024-0013 23

Research on Machine Learning Program Generation

Algorithm Based on AORBCO

Shiqian Wang

School of Computer Science and Engineering

Xi'an Technology University

Xi’an, China

E-mail:1178208937@qq.com

Wuqi Gao

School of Computer Science and Engineering

Xi'an Technology University

Xi’an, China

E-mail:gaowuqi@126.com

Songhan Wang

School of Computer Science and Engineering

Xi'an Technology University

Xi’an, China

E-mail:598226253@qq.com

Abstract—The design and development of machine

learning programs require selecting appropriate data

and algorithms, and coding and debugging based on

specific task requirements and the programming

experience of developers. However, the current

knowledge structure in the field of machine learning is

relatively complex, lacking systematic organization, and

developers often face the problem of lack of experience

when choosing algorithms and designing programs,

resulting in a long development cycle and easy errors in

machine learning programs. In response to the above

issues, this article proposes and designs a machine

learning program generation algorithm based on the

AORBCO model. The program generation ability

includes two sub abilities: algorithm decision-making

ability and code generation ability. AD-EKG has been

designed for algorithmic decision-making ability,

allowing Ego to select appropriate machine learning

algorithms based on datasets in massive data. This

algorithm combines the characteristics of the AORBCO

model's domain knowledge base, knowledge graph based

recommendation algorithm, and collaborative filtering

algorithm. By calculating the descriptive and structural

information between the dataset and algorithm, the

interaction probability between the dataset and

algorithm is obtained, allowing Ego to make algorithmic

decisions interaction probability based. Results of the

experiment have shown that the AD-EKG algorithm can

fully utilize structural and descriptive information to

improve the accuracy of Ego algorithm decision-making.

CodeT5-EKG has been designed for code generation

capability, allowing Ego to automatically generate

machine learning program code. This algorithm

combines the CodeT5 generative model with the domain

knowledge base of the AORBCO model, by adding

auxiliary information extracted using DPR technology to

the code generation task, and performing diversified

fusion operations to improve code generation quality.

The CodeT5-EKG algorithm combines the creativity

and efficiency of generative models and DPR technology,

and is an algorithm that can improve the quality of

generated code while also having the advantages of

generative models. The experiments have proved that

the code generated by this algorithm has better quality

compared to other generative models with the same

number of parameters.

Keywords-Program Generation; Recommendation

Algorithms; AORBCO Model; Machine Learning

I. INTRODUCTION

The so-called automatic generation of machine
learning programs is the process of providing a
dataset by the user and letting the computer
automatically generate machine learning algorithm
code that meets the user's requirements based on
the dataset. The challenges of time pressure and
complexity in machine learning program
development are addressed through automation
and intelligence. However, due to the rapid growth
of its associated data, machine learning technology,
one of the most central techniques of artificial
intelligence, is now facing a serious information
overload problem [1].

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.02, 2024

24

For the past few years, researchers have
attempted to use machine learning, deep learning,
and other techniques to allow machines to
automatically generate code. Beltramelli proposed
a neural network model pix2code [2] which
automatically reverse engineers the user interface
and generates code based on GUI screenshots.
Ahmad et al. proposed PLBART [3] pre-training
model for program generation task. Wang et al. [4]
raised a CodeT5 pre training model for code
generation by incorporating tasks related to
program identifiers during the pre-training process
based on the principles of the T5 model [5].
OpenAI has released the ChatGPT model, which
performs well in handling basic programming
questions, answering technical questions, and
generating basic code snippets. However, when
dealing with complex and specific programming
tasks, especially those that require a lot of details,
ChatGPT's performance may have certain
limitations.

In this context, the AORBCO model
(Agent-Object-Relationship Model Based on
Consciousness-Only) [6], as an intelligence model
derived from the results of research on human
intelligence consisting of the relevant theories of
Consciousness-Only [7], and its idea of modeling
knowledge can effectively alleviate the
information overload problem. This model adopts
the concept of "one person, one world" and
proposes a reasonable abstraction of the objective
world centered on Ego (self). From the perspective
of human intelligence, thinking, and application,
combining recommendation algorithms with code
generation technology can leverage machine
learning algorithms to improve user efficiency,

thereby promoting the popularization and
widespread application of machine learning
algorithms.

Based on analyses and summaries of existing
research, this paper proposes a machine learning
program generation algorithm based on the
AORBCO model. The program generation ability
includes two sub abilities: algorithm
decision-making ability and code generation
ability. AD-EKG has been designed for
algorithmic decision-making ability, allowing Ego
to select appropriate machine learning algorithms
based on datasets in massive amounts of data.
Experimental results have shown that the
AD-EKG algorithm can fully utilize structural and
descriptive information to improve the accuracy of
Ego algorithm decision-making. CodeT5-EKG has
been designed for code generation capability,
allowing Ego to automatically generate machine
learning program code. The results of the
experiment show that this algorithm generates
higher quality code compared to other generative
models with the same number of parameters.

II. OVERALL DESIGN OF EGO PROGRAM

GENERATION CAPABILITY

The program generation capability of Ego
refers to its ability to understand task requirements
from user provided natural language descriptions
and automatically complete the machine learning
program generation process. The program
generation ability includes two sub abilities:
algorithm decision-making ability and code
generation ability. The overall framework diagram
of program generation capability is shown in
Fig.1.

Figure 1. Overall framework diagram of program generation capability

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.02, 2024

25

Firstly, Ego receives natural language text sent
by user Ego, which describes the characteristics of
the dataset and the type of task. Subsequently, Ego
utilized the knowledge alignment feature in the
AORBCO model to align the knowledge of dataset
objects in the domain knowledge base. At this
stage, Ego will consider the dataset object
described by user Ego to be the most similar object
in the domain knowledge base after knowledge
alignment. Then Ego will make capability calls for
the object, including algorithm decision-making
ability and code generation ability. The
algorithmic decision-making ability will make
decisions on the algorithmic object of the dataset,
ultimately enabling Ego to find the algorithmic
object that best matches the dataset object,
forming a dataset algorithm binary. The
subsequent code generation capability will be
applied to the dataset algorithm binary for
information augmentation and code generation,
ultimately generating executable code. This
end-to-end process enables Ego to understand task
requirements from user provided descriptions and
automatically complete the generation process of
machine learning programs. Below, specific
designs will be made for Ego's algorithm
decision-making ability and code generation
ability.

III. DESIGN OF AORBCO-ML PROGRAM

GENERATION ALGORITHM

A. Design of Decision Ability for AD-EKG

Algorithm

The algorithmic decision-making ability of Ego
is its ability to select appropriate algorithms based
on datasets in the knowledge graph of machine
learning. This article designs an Algorithm
Decision Based on Enhanced Knowledge Graph
(AD-EKG) based on the characteristics of
knowledge types in the domain knowledge graph
of the AORBCO model. AD-EKG will combine
structural information and descriptive information
between objects to complete algorithm
decision-making tasks, as shown in Fig.2.

AD-EKG includes a structural message
calculation module and a descriptive information
calculation module. The structural message
calculation module is used to aggregate
information from multi-level neighbors and extract
structural information between objects. The
descriptive information calculation module is used
to extract linear and nonlinear relationships
between object descriptive information. Below are
two key components of AD-EKG.

Figure 2. AD-EKG Overall Framework

1) Structural information calculation module

This article uses the RippleNet algorithm to
implement the structural information calculation
module of Ego. The input to the algorithm is a user
item pair, the output is the probability of a user
clicking on an item. This article views the dataset
object as a user in a machine learning knowledge

graph, an algorithm object as an item, and the
relationship between the dataset object and the
algorithm object as a historical interaction record.
On this basis, use RippleNet to implement the
algorithmic decision-making ability of Ego. The
calculation process of RippleNet is shown in Fig.3.

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.02, 2024

26

Figure 3. RippleNet calculation process

RippleNet calculates the interaction probability
between two entities by searching for potential
path information between user history click
records and recommended items. The algorithm is
executed as follows:

a) Model input: The model accepts users and
items as inputs. User is represented by d , used to
obtain the user's historical click history; The item
is represented by m , representing the item to be
predicted and clicked on.

b) Building a user seed set: The user seed set
contains knowledge information that the user has
operated on in the past. If it is a member of the
seed set, the probability of clicking on the item
during training is recorded as 1 (positive example),
otherwise it is recorded as 0 (negative example).

c) First knowledge dissemination: obtain the

set 1

dS

of first-order (hop-1) ripples of d , denoted

by (, ,)h r t . To obtain valid recommendation

information, there are certain invalid relationships
between objects that need to be filtered.

d) Object embedding and similarity
computation: normalized similarity is computed
from the inner product of embedding vectors. The

combination (,)i ih r of the head node
ih and the

relation
ir in the first-level corrugated set 1

dS given

d is matrix-multiplied with the model input term

m , and then the probability ip of association of m

with each (,)i ih r is obtained separately through the

Softmax layer. Next, the model input term m is

mapped into the embedding space, i.e.,  cm R ,
and the dimension of the object embedding is
denoted by c .The concrete representation of the

association ip probability is shown in

equation(1).

1(, ,)

exp()
Softmax()

exp()


 


d

T
T i i

i i i T

i i

h r t S

m R h
p m R h

m R h  

At this point, the correlation probability ip

can be seen as the similarity between m and

object ih in the relationship space  c c

iR R , i.e.,

the degree to which the user's interests are
preferred in the direction of the relationship in

that ir . Determine the correlation between m

and each (,)i ih r based on the (,)i ih r in the

ripple set k

dS in the user's knowledge graph.

e) Calculate weighted average: In the previous

step, the correlation probability ip of m with

respect to each (,)i ih r in the first level ripple set
1

dS was obtained. ip was multiplied by it in the

first level ripple set 1

dS and then summed to

obtain the first order response 1

do of the current

user d to m , as shown in equation(2).

1

1

(, ,)

 
d

d i i

h r t S

o p t (2)

Through the above process, the response of

user hop-1 ripple set 1

dS to m can be obtained.

The process from step b to step e can be referred
to as preference propagation.

f) Multiple knowledge propagation: The above
steps are the first propagation of user's historical
click records in the knowledge graph. To better

mine knowledge, the first-order response 1

do

obtained in step e is replaced by the embedded
representation of m , and preference propagation
continues. When the number of propagation is set

to 3, the values of 2

do and 3

do can be calculated

sequentially. Finally, the user's embedding
representation is obtained by summing up the
responses of each stage of d , as shown in
equation(3).

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.02, 2024

27

1 2 ...    H

d d dd o o o (3)

g) Predictive value calculation: The user
embed representation and the item embed
representation are inner products, and the

predicted value rY is obtained through the

Sigmoid function, which means the probability of

user d clicking on item m , as shown in

equation(4) Where  represents the Sigmoid

activation function.

 () T

rY d m (4)

2) Descriptive information calculation module

For the implementation of the descriptive
information computing module, this paper
proposes the TCF (Text-based Collaborative
Filtering) algorithm that makes improvements to
the NCF (Neural Collaborative Filtering)
algorithm [8], which uses the NeuMF to jointly
train the GMF and MLP, and utilizes text data to
achieve recommendations. For joint training and
utilizes text data to achieve recommendations.
The algorithm takes descriptive information about
the user-item as input and the output is the
probability of the user clicking on the item.

Figure 4. TCF Calculation Process

The overall structure of TCF is shown in Fig.4
above. Specifically, using t to denote the initial
input text and n to denote that there are n words in
the initial input text, then the descriptive text
corresponding to the object can be denoted by

1: 1 2[, ,...,] n nt w w w w . In this paper, we use

GloVe [9] to initialize the embedding

representation of each word iw and obtain the

sentence representation s by accumulating the
representations of each word.

After text embedding, this paper obtains the

vector forms ds and ms of the dataset and the

descriptive text of the algorithm. In order to dig
deeper into the interaction information between
the two feature vectors, this paper uses the GMF
and MLP layers to analyze the linear and
nonlinear correlations of the dataset and the
algorithm descriptive features, and then fuses
these two types of information using the NeuMF
layer to calculate the interaction probability of the
dataset and the algorithm.

The linear interaction between the dataset and
the algorithm description features can be obtained
through the GMF layer as shown in equation (5)
and equation (6) below:

 1  d ms s (5)

 1 1() Ty G  (6)

Here, denotes the product of elements.
TG is the weight matrix that can be obtained

through learning.  Denotes the Sigmoid

activation function. This step can be interpreted as
a special kind of matrix decomposition and has a
higher expressive power than its original form.

While obtaining the linear interaction
describing the features, this paper obtains the
nonlinear interaction relationship between the two
through the MLP layer. Specifically, this article
connects two feature vectors and captures
nonlinear interactions between features through a
multi-layer fully connected network. The equation
(7, 8 and 9) are as follows:

 0 || d mh s s (7)

 -1()  T

nl n n n nh W h b  (8)

 () T

nl nly W  (9)

The symbol || represents the concatenation

operation between feature vectors. In order to
integrate linear and nonlinear interactions of text

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.02, 2024

28

features, this paper connects the last layer of GMF

and MLP, and fuses linear l and nonlinear

feature nl through NeuMF layer to better learn

implicit interactions between descriptive texts and
predict the final interaction probability of d and
m . Its equation (10) is as follows:

 ((||)) T

t t l nlY W   (10)

Finally, combining the two probabilities,
equation (11) is as follows:

 (() ((||)))T T T

t l nlY W d m W    (11)

Among them, ()Td m calculates the

interaction probability between objects based on
their structural information, ((||))T

t l nlW  

calculates the interaction probability between
objects based on their descriptive information, and

TW is the weight matrix.

B. Design of CodeT5-EKG code generation

capability

The code generation capability of Ego is the
ability to generate corresponding code based on
datasets and algorithms. In order to build the code
generation capability of Ego, this article uses the
CodeT5+model as the basic model and integrates
the domain knowledge base of the AORBCO
model as auxiliary information for the generative
model during code generation. A knowledge
enhanced code generation algorithm
(CodeT5-EKG) is constructed, which can improve
the quality of generated code and has the
advantages of generative modelling, as shown in
Fig.5.

Figure 5. A Code Generation Algorithm Framework Based on Knowledge

Enhancement

CodeT5-EKG consists of a code generation
module and an information augmentation module.
The code generation module is used to convert
machine learning code templates into
corresponding machine learning program code.
The information enhancement module is used to
extract relevant code from the domain knowledge
base as auxiliary information for the code
generation module, thereby improving the
performance of the code generation module.
Below are two key components of CodeT5-EKG.

1) Code generation module

In this paper, the CodeT5 family of models is
used as the basic model for code generation, on
the basis of which further innovations are made to
obtain the CodeT5+ model. First, the model
introduces a flexible mode selection mechanism,
which enables it to run flexibly in encoder-only,
decoder-only, or encoder-decoder modes
according to the needs of different tasks. This
design makes CodeT5+ more adaptable to
different types of downstream tasks and improves
the generality of the model. Second, CodeT5+
employs a multi-task pre-training strategy,
including diverse tasks such as span denoising,
causal language modeling (CLM), and text-code
comparison learning. Such a set of pre-training
tasks helps the model learn richer representations
from both code and text data, allowing for better
migration and adaptation in various applications.

In terms of model architecture, CodeT5+
adopts a "shallow encoder and deep decoder"
architecture. The encoder and decoder get
initialized by pre-training checkpoints and
connected to the cross-attention layer. By freezing
the deep decoder and training only the shallow
encoder and the cross-attention layer, the
computational efficiency is improved while the
performance of the model is maintained. In
addition, CodeT5+ introduces mechanisms for
adjusting instructions to better align with natural
language instructions. This mechanism makes the
model more flexible in understanding and
following natural language instructions, thus
better meeting user expectations when generating
code.

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.02, 2024

29

The CodeT5+ model was trained using the
expanded CodeSearchNet pre-training dataset,
which contains nine programming languages, as
shown in Table 1.The model was divided into two
groups for pre-training, the first group being
CodeT5P-220M, CodeT5P-770M, and the second
group is CodeT5P-2B, CodeT5P-6B, and
CodeT5P-16B.The first group is trained from
scratch according to the architecture of T5; while
in the second group, the decoders of the models
are initialized from the CodeGen-mono-2B,
CodeGen-mono-6B, CodeGen-mono- 16B models
were initialized, and the encoder was initialized
from the CodeGen-mono-350M model.

TABLE I. PRE-TRAINING DATASET

Language Sample quantity

Ruby 2,119,741

JavaScript 5,856,984
Go 1,501,673

Python 3,418,376
Java 10,851,759

PHP 4,386,876

C 4,187,467
C++ 2,951,945

C# 4,119,796

In terms of model pre-training, CodeT5+
adopts two stages for pre-training: in the first
stage of pre training, the model undergoes
pre-training for span denoising tasks and joint
training for two CLM tasks, and uses a linear
decay learning rate (LR) scheduler with a
maximum learning rate of 2e-4. The batch size of
the denoising task is set to 2048, while the batch
size of the CLM task is 512. In the second stage
of pre-training, the model adopted a strategy of
equal weight contrastive learning, matching, and
joint optimization of two CLM losses, and
underwent 10 cycles of training. Set the batch size
to 256 and the learning rate to 1e-4. The
maximum length of the code and text sequence is
set to 420 and 128, respectively. The model uses
the AdamW optimizer weights decay to 0.1. At
the same time, the mixed precision training
technique of ZeRO Stage 2 and FP16 using
DeepSpeed [10] is utilized to accelerate the
training process.

2) Information Enhancement Module

When facing problems, Ego usually consults
and organizes relevant information in the

knowledge base to enhance the specificity and
accuracy of the answers. In recent years, some
researchers have attempted to incorporate
knowledge bases into generative tasks and
perform diverse fusion operations to improve the
efficiency of algorithms. They proposed a hybrid
neural dialogue model with both response
retrieval and generation capabilities. Lewis et al.
[11] proposed a RAG framework for knowledge
intensive NLP tasks, which utilizes the
DPR(Dense Passage Retrieval) algorithm to
extract information from search results,
concatenates the extracted information with the
original input, and finally inputs the concatenated
results into a generator for processing [12].
Experimental results have shown that this method
can produce more specific and accurate results.

In order to fully utilize DPR technology and its
advantages in natural language processing and
information retrieval, this paper adopts DPR
technology to achieve code extraction of Ego in
the domain knowledge base. DPR uses a text
encoder to encode the questions and answers in
question and answer data separately to convert the
input text into a dense vector representation. By
calculating the similarity between the two vectors
to evaluate their correlation, it achieves fast
retrieval in large-scale text datasets.

This paper constructs an information enhancer
specifically designed for machine learning code
generation tasks based on DPR technology. In
DPR, by using question answer pairs as training
data, the model can learn how to accurately match
the correlation between questions and answers,
thereby improving the accuracy of retrieval. Two
of the encoders used pre trained CodeBERT to
obtain better vector representations. Its structure is
shown in Fig.6.

Figure 6. Diagram of DPR-based enhancer architecture

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.02, 2024

30

The objective likelihood function of the
enhancer can be expressed as equation (12):

,

sim(,)

, , 1 sim(,)sim(,)

1

(, , ,...,) - log





  

 






i i

i i ji i

q c

i i i l i n l n q cq c

j

e
L q c c c

e e
 (12)

Among them, iq represents the i th natural

language input, 

ic refers to the correct

descriptive information fragment related to natural

language iq , ,



i jc represents the j th descriptive

information block except for 

ic , n means the

total number of samples, and sim stands for the
calculation of dot product similarity. After being
processed by an information enhancer, the
processing method of Izacard et al [14] is
referenced to splice and replace natural language
inputs with descriptive chunks of information The
process is shown in equation (13):

 1 2' ...     nx x y y y (13)

Where x denotes the original input text, ky

denotes the k th spliced and replaced descriptive
information block,  denotes the splicing and
replacing operation, and 'x denotes the spliced
and processed input text. The original input text
for the CodeT5+ model is shown in Fig.7 below.

Figure 7. original input

The above figure shows the original input text
of the CodeT5+ model. Among them, task area
represents the domain of the machine learning
problem, dataset name represents dataset object’s
name, and algorithm name represents the

algorithm object’s name. In addition, the original
input also includes module annotations related to
machine learning programs, such as importing
third-party libraries, loading and splitting datasets,
model definitions, etc. The annotation texts of
each module are connected with placeholders
"[EKG]".

When performing information augmentation,
the relevant fields such as domain, dataset name,
algorithm name, and placeholder "[EKG]" will be
replaced by the algorithm selected by the Ego
algorithm's decision-making ability and the
relevant information retrieved by DPR, forming
the input source data after replacement processing.
Partial retrieval information examples and text

replacement examples are shown in Fig.8 and Fig.
9.

Figure 8. Retrieving information Example

Figure 9. Text Replacement Example

When DPR fails to retrieve the corresponding
text, the CodeT5+ model will directly generate
code and replace the corresponding part of the
placeholder "[EKG]". After DPR retrieval
replacement and CodeT5+ model generation
replacement, the original input will become a

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.02, 2024

31

complete code sequence. The final example of
code generation is shown in Fig.10.

The above methods combine the advantages of
information retrieval and generative models. DPR
can quickly and accurately retrieve relevant code
fragments, providing rich contextual information
and prior knowledge. The retrieved code snippets
help CodeT5+better grasp the context and
generate code that matches the task requirements.

Figure 10. Code Generation Example

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Verification of Decision Ability of AD-EKG

Algorithm

This section mainly conducts validation
experiments on the decision-making ability of the
Ego algorithm, and the environmental information
studied in the experiments is shown in Table 2.

TABLE II. EXPERIMENTAL ENVIRONMENT INFORMATION

Name Configuration information

operating system Windows 11

RAM 16G

Graphics card NVIDIA GeForce RTX 3070 8G

development language Python 3.7.8

Deep learning platform TensorFlow 2.2.0

After studying the characteristics of data in the
field of machine learning and the classification
strategies of machine learning related information
resources and network platforms, this article uses
web scraping technology to collect data from
websites such as Paperswithcode and Github.
These data mainly include datasets, algorithms,
and other related objects related to the field of
machine learning, forming a knowledge graph
based recommendation algorithm dataset. The
dataset constructed in this article covers four
fields (computer vision, semantic segmentation,
image generation, and object detection). Including
256 machine learning datasets, 1482 machine
learning algorithms, 4 machine learning tasks,
1366 academic papers, etc., a total of 5314
objects.

1) Building a dataset

After cleaning and preprocessing the crawled
data, this article successfully screened 233
machine learning datasets and 1448 machine
learning algorithms, which will be used for
training models and analyzing user item
interactions. As shown in Table 3.

TABLE III. DATASET STATISTICS

Domain knowledge graph Dataset

Number of objects 5262 Number of dataset objects 233

Relationship types 48 Number of algorithm objects 1448

Number of triples 14774 Number of interactions 1485

Average number of descriptive words 50.5 Sparsity 0.00440

2) Experimental plan

a) Evaluation indicators. This article models
the decision-making ability of Ego algorithm as a
recommendation algorithm, and in
recommendation algorithms, the recommended

results are usually viewed as a classification
problem, that is, whether users like the items
recommended by the recommendation system.
Therefore, this article adopts commonly used
indicators, including AUC, Precision, Recall, F1
score, and NDCG.

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.02, 2024

32

b) Parameter settings.

For RippleNet, The object embedding and
relation embedding dimensions are configured to
16, with a maximum of 3 hops, 10 epochs, and a
batch size of 32, optimized using the Adam
optimizer. The learning rate and regularization
coefficients are determined via grid search, and

the search spaces are {10-4, 5×10-4, 10-3, 5×
10-3}和{10-5, 10-4, 10-3, 10-2}；

For TCF, the dimension of the text embedding
was set to 300, Multiply was used in GMF for
linear computation, and 4 fully connected layers
were used in MLP for nonlinear computation, and
the outputs of GMF and MLP were connected by
Concatenate of NeuMF.

c) Comparison experiment. We compare
AD-EKG with KGNN-L[14] and KGCN
[15]recommendation models

d) Ablation experiment. To investigate the
validity of the algorithm, i.e., whether both graph
structural information and textual descriptive
information are helpful for recommendation, this
paper sets up the following scenarios for Top-K
evaluation:

 Using only structural information
(RippleNet);

 Using only descriptive information (TCF);

 Using both structural and descriptive
information (AD-EKG).

3) Experimental analysis

The results of AD-EKG on the CTR prediction

task and Top-K's recommendation are shown in

Fig.11 and Table 4, respectively.

(a) Precision@K

(b) Recall@K

(c) F1-score@K

(d) NDCG@K

Figure 11. Top-K ablation experiments of AD-EKG under different variants

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.02, 2024

33

TABLE IV. CTR PREDICTION COMPARISON EXPERIMENT (%)

Model AUC Precision Recall F1-score

KGNN-LS 80.01 71.63 76.10 73.80

KGCN 71.62 62.78 64.38 63.57

RippleNet 82.55 69.43 86.91 77.19

TCF 82.16 78.24 82.81 80.46

AD-EKG 88.20 83.80 86.82 85.28

The experimental results from the experiments
are presented in Table 4 and Fig.11. From the
metrics Precision, Recall, F1-score and NDCG,
AD-EKG outperforms the model that does not use
both information in the recommendation task.The
Recall value of AD-EKG increases with the
length of the recommendation list, which indicates
that the model is better able to capture the user's
interests and needs.The NDCG metric is a ranking
quality and relevance to measure the performance
of ranking models in recommendation algorithms,
AD-EKG is also higher than traditional models in
NDCG metrics, indicating that AD-EKG can
provide more relevant and higher quality
recommendation results.

In summary, the AD-EKG model outperforms
the single method traditional model on the CTR
prediction task and Top-K recommendation. This
suggests that the simultaneous use of structural
and descriptive message from the knowledge
graph can significantly improve the effectiveness
of recommendation models.

B. Validation of CodeT5-EKG Code Generation

Capabilities

This section focuses on the validation
experiments of Ego code generation capability.
Considering the performance requirements of the
large language model, the experiments in this
section are chosen to be conducted on the cloud
platform. The specific environment information of
the cloud platform is shown in Table 5 below.

TABLE V. CLOUD PLATFORM EXPERIMENTAL ENVIRONMENT

INFORMATION

Name Configuration information

operating system Ubuntu 20.04.5 LTS

memory 64G

graphics card NVIDIA A100 40GB

development language Python 3.8

Deep learning platform Pytorch 2.0.0

1) Dataset

In order to verify the performance of the DPR
technique on the code generation task, this paper
constructs a dataset of questions related to
machine learning program generation.

Figure 12. Example plot of a sample dataset

The dataset mainly consists of 122 question
and answer data on machine learning image
classification questions, as shown in Fig.12 below.
The dataset of the machine learning program

constructed in this paper to generate relevant
questions is shown in Fig.12 above, where
columns 3, 5, 14, 16, 17, and 18 of the file
correspond to the dataset, algorithm, description

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.02, 2024

34

of the algorithm, description of the dataset, type
of the task, relevant questions, and the answers of
the machine learning domain, respectively, and
the detailed data about the question and answer
section is shown in Table 6.

TABLE VI. STATISTICAL DATA ON Q&A DATASET

Dataset Attribute

source language English

target language Python

quantity 121

Average number of words in the source language 52

Maximum number of words in the source language 69

Average number of words in the target language 1365

Maximum number of words in the target language 1593

2) Evaluation Metrics

In this paper, the CodeBLEU metric [16] and
ROUGE [17] metrics are used for assessing the
quality of the code generated by the model. The
CodeBLEU metric is a variant of the BLEU
(Bilingual Evaluation Understudy) metric [18],
and the BLEU metric is calculated as follows:

1

BLEU BP exp(log)


  
N

n n

n

w P (14)

 1 /

1
BP




 


r c

if c r

e if c r
 (15)

nw denotes the weight of the n -tuple and np

is the precision of the co-occurring n -tuple.BP is
a penalty factor used to ensure that the scoring
takes into account the length of the generated
sequence and does not just focus on how accurate
the generation is.

CodeBLEU is based on BLEU, additional
syntactic matching as well as semantic matching
score items are introduced, and the final score is
weighed by a certain proportion, and its
calculation formula16 is as follows:

weight ast dfCodeBLEU BLEU BLEU Match Match          

(16)

In BLEU calculation, different tokens have the
same weight, and different tokens have different

weights in CodeBLEU calculation. In equation

(16), weightBLEU is a weighted n-gram matching

metric, similar to the BLEU computation;

astMatch is the similarity of the abstract syntax

tree, which is used to measure the syntactic

information of the code; and dfMatch is the

similarity of the semantic data flow, which takes
into account the semantic similarity between the
generated code and the reference code.

ROUGE metrics are mainly used to measure
the degree of overlap between
computer-generated code and reference code to
evaluate assess the quality of automatically
generated code. Commonly used evaluation
metrics include ROUGE-N and ROUGE-L.

ROUGE-N mainly evaluates the code quality
by calculating the number of n-grams that are the
same in all the sentences in the automatically
generated code and the reference code, and the
proportion of them in the reference code. The
detailed calculation formula17 is given below:

 

 

()

ROUGE-N
()

 

 



 

 
N

N

match N

S Reference gram S

N

S Reference gram S

Count gram

Count gram
(17)

Ngram means that the length of the word is n ，

()match NCount gram

represents the frequency with

which words of length n exist both within the
automatically generated code and within the

reference code, as opposed to ()NCount gram

which represents the frequency with which words
of length n exist only within the reference code.

ROUGE-L counts the longest common
substring that exists between the automatically
generated code and the reference code to evaluate
the overall coherence of the code, with Eqs. (18,
19, and 20) as follows:

(,)

lcs

LCS X Y
R

m
 (18)

(,)

lcs

LCS X Y
P

n
 (19)

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.02, 2024

35

2

2

(1) (,)



lcs

lcs lcs

LCS X Y
F

R P




 (20)

Equation (19) and equation (20) denote the

calculation of recall lcsR and accuracy lcsP ,

respectively. The lcsF in equation (21) denotes

the final calculated ROUGE-L value. Where X
denotes the text of the reference code, and its
length is identified by m . Y denotes the text of
the model-generated code, and its length is
identified by n . (,)LCS X Y denotes the length of

the longest common subsequence of X and Y .

The parameter  is generally set to a larger

number, which is used to indicate that the

calculation of lcsP recall holds a larger weight in

the calculation of lcsF .

3) Experimental analysis

Comparison of the experimental results is
shown in Table7. It indicates that combining DPR
technology with generative models is more
effective in handling code generation problems
than pure generative models when using the same
parameter quantity model.

TABLE VII. COMPARATIVE EXPERIMENT (%)

label model Parameter quantity CodeBLEU ROUGE-1 ROUGE-2 ROUGE-L

1 CodeT5 770M 12.62 7.62 3.02 5.29

2 CodeT5-EKG 770M 23.93 13.52 4.62 10.02

3 CodeT5 2B 32.83 20.04 6.43 14.32

4 CodeT5-EKG 2B 47.94 24.30 9.22 17.60

5 CodeT5 6B 46.27 32.96 14.21 25.68

6 CodeT5-EKG 6B 51.12 35.58 16.11 27.54

TABLE VIII. COMPARISON WITH OTHER MODELS (%)

label model Parameter quantity CodeBLEU ROUGE-1 ROUGE-2 ROUGE-L

1 CodeT5-EKG 770M 23.93 13.52 4.62 10.02

2 CodeT5-EKG 2B 47.94 24.30 9.22 17.60

3 CodeT5-EKG 6B 51.12 35.58 16.11 27.54

4 CodeGen-Mono 2B 34.08 20.23 6.52 14.94

5 GPT-Neo 2.7B 19.82 12.57 2.79 11.28

6 InstructCodeT5 16B 43.71 25.00 9.63 21.06

Analyze the results in Table 8. As the number
of model parameters increases, CodeT5-EKG
shows significant improvements in both
CodeBLEU and ROUGE metrics. Compared to
purely generative models such as CodeGen Mono
and GPT Neo, CodeT5-EKG exhibits higher code
generation accuracy and consistency at smaller
parameter sizes. In conclusion, the comparative
results in Table 8 show that combining DPR
techniques with generative models has significant
advantages in English code tasks.

The retrieval + generative model constructed in
this article combines the efficiency of the retrieval
model with the creativity of the generative model.
This combination enables the model to better
control the generated content and make the
generated content more reasonable. Compared to
pure generative models, retrieval + generative

models require fewer parameters and
computational resources, making them easier to
train and deploy. However, this model also has
some limitations. It relies on information from
prior data for retrieval, so different prior
knowledge needs to be stored for different fields
or tasks. Secondly, this behavior of retrieval may
lead to a lack of diversity in the generated content,
which may not be as flexible as pure generative
models in some cases.

V. CONCLUSIONS

This article details the design and validation of
a programme generation method based on the
AORBCO model, including the design of
algorithm decision-making ability and code
generation ability. In the design of algorithm
decision-making ability, this article proposes the
AD-EKG algorithm. This algorithm combines the

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.02, 2024

36

characteristics of AORBCO model's domain
knowledge graph, RippleNet, and TCF algorithm
to enable Ego to intelligently select machine
learning algorithms suitable for different tasks and
datasets. The experimental results show that the
AD-EKG algorithm can intelligently select
suitable machine learning algorithms on different
tasks and datasets, providing reliable
decision-making basis for automatic program
generation. In the design of code generation
capability, this article adopts CodeT5+as the basic
model for program generation. CodeT5+ is a
pre-trained converter architecture that combines
the information enhancer DPR to transform
abstract algorithm descriptions into executable
code. The experimental results show that the code
generated by the CodeT5-EKG model has good
accuracy and readability, providing support for
the practicality of automatic generation of
machine learning programs.

This article proposes a novel machine learning
program automatic generation algorithm in the
context of the AORBCO model, which has made
important contributions to promoting research and
application in the field of automated machine
learning program design. In future research, the
method proposed in this article can be further
optimized and expanded to better adapt to the
needs of different fields and tasks, providing more
possibilities for the development of artificial
intelligence.

REFERENCES

[1] Huang Liwei, Jiang Bitao, Lu Shouye et al. Review of
recommendation systems based on Deep Learning [J].
Journal of Computers, 2018, 41(07):1619-1647.

[2] Beltramelli T. pix2code: Generating Code from a
Graphical User Interface Screenshot [C]//Proceedings
of the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. 2018: 1-6.

[3] Ahmad W U, Chakraborty S, Ray B, et al. Unified
Pre-training for Program Understanding and Generation
[J]. 2021. DOI: 10.18653/v1/2021.naacl-main.211.

[4] Wang Y, Wang W, Joty S, et al. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder
Models for Code Understanding and Generation [J].
2021.

[5] Raffel C, Shazeer N, Roberts A, et al. Exploring the
Limits of Transfer Learning with a Unified
Text-to-Text Transformer [J]. 2019.
DOI:10.48550/arXiv.1910.10683.

[6] Feng Yanxing, Research on Program Generation in
AORBCO Model [D]. Xi'an University of Technology,
2021. DOI:10.27391/dcnki.gxagu.2021.000121

[7] Xiao Liangshun, Research on Knowledge Fusion in
AORBCO Modeling [D]. Xi'an University of
Technology, 2023.

[8] He X, Liao L, Zhang H, et al. Neural Collaborative
Filtering [J]. International World Wide Web
Conferences Steering Committee, 2017.
DOI:10.1145/3038912.3052569.

[9] Pennington J, Socher R, Manning C. Glove: Global
Vectors for Word Representation [J]. 2014.
DOI:10.3115/v1/D14-1162.

[10] Rasley J, Rajbhandari S, Ruwase O, et al. DeepSpeed:
System Optimizations Enable Training Deep Learning
Models with Over 100 Billion Parameters [C]//KDD '20:
The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. ACM, 2020.
DOI:10.1145/3394486.3406703.

[11] Lewis P, Perez E, Piktus A, et al. Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks [J].
2020. DOI:10.48550/arXiv.2005.11401.

[12] Karpukhin V, Ouz B, Min S, et al. Dense Passage
Retrieval for Open-Domain Question Answering [J].
2020. DOI:10.18653/v1/2020.emnlp-main.550

[13] Izacard G, Grave E. Leveraging Passage Retrieval with
Generative Models for Open Domain Question
Answering [J]. 2020. DOI:10.48550/arXiv.2007.01282.

[14] Wang H, Zhang F, Zhang M, et al. Knowledge-aware
Graph Neural Networks with Label Smoothness
Regularization for Recommender Systems [J].
SIGKDD explorations, 2019.

[15] Li Xiang, Yang Xingyao, Yu Jiong et al. A bipartite
recommendation algorithm based on knowledge graph
convolutional networks [J]. Computer Science and
Exploration, 2022, 16(01):176-184.

[16] Ren S, Guo D, Lu S, et al. CodeBLEU: a Method for
Automatic Evaluation of Code Synthesis [J]. 2020.
DOI:10.48550/arXiv.2009.10297.

[17] Barbella, Marcello and Tortora, Genoveffa, Rouge
Metric Evaluation for Text Summarization Techniques.
Available at SSRN: https://ssrn.com/abstract=4120317

[18] Ehud Reiter; A Structured Review of the Validity of
BLEU.Computational Linguistics 2018; 44 (3): 393–
401. doi:https://doi.org/10.1162/coli_a_00322

https://ssrn.com/abstract=4120317
https://doi.org/10.1162/coli_a_00322

