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Abstract—As computer vision and deep learning 

detection techniques advance rapidly, their use in 

identifying defects has become more common across 

various industries. The significance of Printed Circuit 

Boards (PCBs) in contemporary electronic devices is 

undeniable, as they substantially influence the 

functionality and durability of these products. Thus, 

utilizing deep learning models for identifying flaws in 

Printed Circuit Boards (PCBs) is of particular 

importance. The focus of this study is primarily on 

examining PCB defect identification utilizing deep 

learning techniques. Firstly, it introduces the importance 

and development history of PCBs in the electronics and 

information industry. It then offers a comprehensive 

review of the existing research on conventional PCB 

defect detection approaches alongside methodologies 

grounded in deep learning. Following that, the structure 

of the YOLOv8 object detection model and its key 

technologies are elaborated. Lastly, the superior 

performance of YOLOv8 in PCB defect detection tasks 

is verified through comparative experiments. According 

to the evaluation metrics of the algorithm, the average 

detection accuracy reaches 92.3%, and the Frames Per 

Second (FPS) value reaches 157.2, meeting the accuracy 

requirements for PCB defect detection in the industrial 

domain. 
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I. INTRODUCTION  

The Printed Circuit Board (PCB), an essential 
element in electronic devices, is produced through 
processes that involve electronic chemistry, the 
industry is honored as the "mother of electronics". 
PCB plays an indispensable role in the electronic 
information industry. Widely used in a variety of 
fields, including but not limited to integrated 
circuits, artificial intelligence, medical equipment, 
aerospace and industrial equipment, PCB's main 
function is to connect the circuit components, so 

as to facilitate the electronic equipment to achieve 
higher performance and efficiency. By connecting 
various electronic components and devices 
together in an orderly manner, PCB realizes the 
effective assembly of circuits, which is crucial for 
the proper functioning of electronic devices. In 
modern technology, the role of the PCB is not only 
to provide circuit connectivity, it also helps to 
optimize the stability, reliability and performance 
of electronic equipment. With the help of PCBs, 
device manufacturers are able to achieve higher 
performance standards and more sophisticated 
functionality, thus providing a better user 
experience. Therefore, PCB is considered one of 
the cornerstones in the field of electronics and is 
important for the development of modern society 
and technological advancement. 

Modern electronic and electrical devices must 
rely on PCBs for electrical interconnections. 
Therefore, the quality of PCB boards is crucial for 
electronic devices and directly affects the success 
of the product. With the rapid development of 
emerging fields such as Internet of Things (IoT) 
technology, automotive electronics and 5G 
communications, the quality of PCB board design 
and production is vital for the efficiency and 
dependability of electronic products. Following 
the reform and opening up period, China's 
electronics sector has seen swift advancement, 
particularly in recent times, coinciding with the 
boom in the electronics industry, China's PCB 
manufacturing industry has continued to develop 
rapidly, with output value and production steadily 
ranking among the global leaders, making 
important contributions to the national economy 
and employment. With the continuous renewal of 
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electronic products, price competition continues to 
reshape the supply chain structure. With its 
industrial distribution, cost and market advantages, 
China has rapidly emerged as one of the most 
important PCB production bases in the world. 

II. RELATED WORKS 

The PCB contains an extensive array of 
components, each with their intricate and varied 
characteristic details. During the production 
process, various uncertainties such as raw 
materials, production environment and manual 
operation often lead to various surface defects. 
Regular and prompt inspections are essential to 
maintaining production line functionality. As a 
result, there has been an ongoing investigation into 
PCB surface defect detection both domestically 
and internationally. 

Currently, defect detection technologies are 
primarily divided into two approaches: 
conventional techniques and those based on deep 
learning. Next, the research status of these two 
directions will be described in detail. 

Conventional methods for detecting defects in 
PCBs encompass manual examination, electrical 
measurement, and automated optical evaluation 
techniques. Manual inspection is one of the 
earliest approaches, which requires operators to 
use microscopes or magnifying glasses to discover 
various complex defects on the circuit board [1,2]. 
However, this approach is susceptible to 
subjective factors such as visual fatigue, which 
may lead to problems such as misdetection and 
missed detection. Simultaneously, the challenges 
associated with manual inspection increase 
because of the high cost of labor and reduced 
efficiency, compounded by the growing scale of 
integrated circuits and the intricacy of their wiring. 
Another method is electrical testing, which uses a 
probe instead of a needle bed, and a fast-moving 
electrical probe is placed in contact with the pins 
of the PCB for electrical measurement [3]. 
However, this approach requires the probes to be 
in contact with the board, which may damage the 
PCB surface and lead to unnecessary losses. 
Automated optical inspection, on the other hand, is 
limited by multi-sensor imaging, light source, field 
of view, and resolution. In real production 

environments, debugging is complicated and lacks 
good portability. All of these traditional methods 
have limitations, the process is complex, and any 
one of the errors may lead to misdetection. A 
single inspection method can no longer meet the 
demand for efficient and rapid inspection of 
production lines. 

The swift advancement of deep learning 
algorithms has sparked a surge in research 
focusing on the detection of PCB surface flaws 
using Convolutional Neural Networks (CNNs) [4]. 
Various researchers have introduced multiple deep 
learning-oriented techniques to address the issue 
of PCB defect detection.  For instance, Ding and 
colleagues [5] have presented the Tiny Defect 
Detection Network (TDD-Net), which integrates 
the fundamental network of Faster R-CNN with 
Feature Pyramid Networks (FPN) [6] to enhance 
the precision in detecting PCB defects. In addition, 
Li et al [7] trained a mixture of Faster R-CNN and 
YOLOv2 models and integrated the detection 
results of the two models to achieve a high degree 
of precision. Hu and colleagues [8] have combined 
FPN with ResNet50 as the foundational network 
for Faster R-CNN, incorporating the ShuffleNetV2 
framework to enhance the model's detection 
precision.  Meanwhile, Tang and associates [9] 
employed a dual network alongside a pyramid 
pooling module (PPM) for defect identification, 
attaining high performance in detection. However, 
although the above algorithms have achieved 
better results in reducing false and missed 
detections, the intricate nature of the 
comprehensive model and its elevated time 
complexity pose challenges in fulfilling the real-
time detection necessities within PCB 
manufacturing settings. This complexity may 
affect the application of the algorithms, especially 
in production sites where fast detection is required. 

Yuan Li et al [10] integrated the Multi-Residual 
Attention Mechanism (MRHAM) into the 
YOLOv4 algorithmic model to enhance the ability 
of sensory field attention for defective target 
features. Concurrently, they employed the K-
means++ clustering method to conduct an in-depth 
analysis of the PCB dataset, enhancing model 
robustness and ensuring rapid processing.  Liao 
and colleagues [11] introduced a PCB defect 
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detection framework using YOLOv4-MN3, which 
streamlined and optimized the backbone network, 
feature fusion unit, and prediction module, 
diminishing the parameter count and resulting in a 
detection rate of 56.98 frames per second (FPS). In 
contrast, Wang and colleagues [12] presented a 
lightweight network for defect detection, YOLOX-
MC-CA, which incorporated Coordinate Attention 
(CA) [13] and enhanced the CSPDarkNet 
backbone to accelerate detection speed, achieving 
satisfactory performance on the PCB open dataset.  
These research efforts meet the real-time criteria 
by streamlining the network architecture, thereby 
accelerating detection. Nevertheless, such 
simplification can potentially compromise the 
model's capacity to extract features from the input 
images. Therefore, further improving the detection 
efficiency while maintaining the detection 
accuracy is an important issue of concern for 
current scholars at home and abroad. 

III. ALGORITHMS MODEL 

YOLOv8 was proposed by Ultralytics in 
January 2023 as an improved version of the 

YOLOv5 algorithm model.  Similar to YOLOv5, 
it does not have an associated paper at the moment, 
but its code has been open-sourced on the GitHub 
repository. YOLOv8 continues the overall 
architecture of the algorithm model since 
YOLOv4, as illustrated in Figure 1. The 
framework principally comprises three elements: 
the Backbone, which is the feature extraction 
network, the Neck, responsible for feature fusion, 
and the Head, the detection head component. 
Within this configuration, the Backbone 
commences the process by extracting attributes 
from the samples, resulting in the creation of 
feature maps at three distinct scales. The Neck 
integrates these three feature maps with surface 
and depth information, producing three new 
feature maps.  The Head performs classification 
and regression on each sample point of the three 
new feature maps.  The YOLOv8 algorithm model 
is categorized into N, S, M, L, and X versions 
based on the model's width and depth. In the 
following sections, a detailed analysis of YOLOv8 
will be conducted, covering Backbone, Neck, 
Head, and the loss function. 

 

Figure 1.  Diagram of YOLOv8 structure 
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A. Feature Extraction Network 

The attribute extraction network of YOLOv8 
represents an enhancement upon YOLOv5.  
Rather than employing the Focus component for 
parameter reduction, YOLOv8 utilizes a 2D 
convolution with a stride of 2 and a kernel size of 
3 for expanding channels from the initial input.  It 
also introduces a novel convolutional unit, C2f, 
which takes the place of the C3 unit in YOLOv5, 
while maintaining the SPPF pooling element. 

The C2f module is still constructed based on 
the CSPNet (Cross Stage Partial Network) idea, 
and the architecture is depicted in Figure 2. Upon 
inputing the attributes into the C2f unit, the 1x1 
convolution will be used for channel integration, 
and then the feature tensor will be sliced into two 
parts according to the channel Split, one of which 
will enter the Bottleneck block to further extract 
the features, and the other part will be spliced with 
the features processed by the Bottleneck block 
according to the channel. This configuration 
augments the ability of the convolutional neural 
network to extract features and minimizes the time 
spent on memory access. The Bottleneck is 
illustrated in Figure 3, which utilizes the residual 
idea, where the original input is convolved twice 
to extract features and then pointwise added to the 
original input. One part of the output of the 
Bottleneck continues to be used for the Bottleneck 
operation, and the other part is spliced with the 
half after Split for per-channel splicing. The 
advantage of the residual idea is that it not only 
preserves the basic features of the original input, 
but also avoids the problem of vanishing gradients. 

 

Figure 2.  Schematic diagram of C2F module 

 

Figure 3.  Bottleneck Schematic Diagram 

SPPF (Spatial Pyramid Pooling Fast) is an 
improved version of SPP, the structure is able to 
extract features at different scales of the object as 
SPP, enrich the feature information of the output 
layer of this feature, and present the same effect, 
while the time consumed is half of SPP, the 
structure is shown in Figure 4. The main process is: 
after the input features pass through the 1x1 
convolutional integration channel, the output is 
copied in two copies, one for pooling kernel of 5 
for maximum pooling, and the other is involved in 
the splicing with the output of the pooling layer. 
The pooled feature output is also copied into two 
copies, one to participate in the splicing of other 
pooled outputs, and the other to continue the 
maximum pooling, repeat this step three times, a 
total of four copies of the output features, four 
copies of the output features are spliced according 
to the channel, and the channel information is 
integrated using the 1x1 convolution. 

 

Figure 4.  Schematic diagram of SPPF structure 

B. Feature Fusion Networks 

The Neck segment of YOLOv8 predominantly 
utilizes an enhanced version of the PANet (Path 
Aggregation Network) design, which builds upon 
the FPN (Feature Pyramid Networks). This 
structure involves upsampling the feature layers of 
smaller dimensions and fusing them with feature 
layers of larger dimensions, directly outputting the 
FPN to enrich the feature information contained in 
the large-dimensional feature maps.  On the other 
hand, PANet further downsamples the fused large-
dimensional features, merges them again with the 
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feature maps of smaller dimensions, enriching 
contextual information, and enhancing the 
expression capability of the smaller-dimensional 
features. In contrast to YOLOv5, YOLOv8 
employs the C2f unit in place of the C3 unit, and 
integrates channel-wise before upsampling the 
feature maps of smaller dimensions by removing 
the 1x1 convolution. 

C. Detection Head 

The Head component of YOLOv8 has 
transitioned from the initial coupled head design to 
the present prevalent decoupled head architecture.  
This decoupled head represents a standard design 
in object detection, tasked with deriving target 
location and class information from the detection 
network's feature map. 

Specifically, decoupling the head involves 
separating the main part of the neural network 
model from the classifier part for training. The 
advantage of this design is the flexibility to modify 
and replace the classifier without altering the 
backbone network. Moreover, the decoupled head 
efficiently diminishes the quantity of parameters 
and the computational burden, which enhances the 
model's capacity for generalization and robustness, 
all while maintaining the backbone network 
architecture. 

Within the YOLOv8 decoupled head structure, 
the prior Obj branch has been eliminated.  Now, 
only separate branches for classification and 
regression persist.  The regression branch employs 
an integral form derived from the Distribution 
Focal Loss concept.  It is important to highlight 
that the channel counts in the classification and 
regression branches of the decoupled head may 
differ. 

D. Loss Function 

The loss function is a critical element in the 
training of algorithmic models; an appropriately 
designed loss function can lead to quicker model 
convergence and enhanced robustness.  The loss 
function utilized by YOLOv8 comprises a 
combination of classification loss VFL (Varifocal 
Loss) and regression loss CIOU + DFL 
(Distribution Focal Loss). 

The classification loss VFL is shown in 
Equation 1, where q  represents the overlap and 

concurrent alignment between the projected 
coordinate system and the actual coordinate 
system, p  is the softmax output value of the 

category,   considers the spectrum of values [0,1], 
and γ  considers the spectrum of values [0,5]. 

Since there are too few positive samples during 
training, reducing the Loss contribution of 
negative samples makes the model more inclined 
to the training of high quality positive samples. 

 ( ( ) (1 ) log(1 )) 0
( , )

log(1 ) 0

q qlog p q p q
VFL p q

p p q
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The regression loss regL  mainly calculated 

using the summation of the CIOU  loss CIOUL  and 

the DFL  loss is depicted in Equation 2, the CIOUL  

mathematical expression is illustrated in Equation 
3, and the DFL  mathematical expression is 
illustrated in Equation 6. 
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In Equation 3, ( , )IOU A B  signifies the degree 

of overlap and concurrent alignment between the 
actual and estimated coordinate systems, 

2( , )gtb b  notes the geometric distance measured 

in Euclidean space between the central points of 
the forecasted and actual coordinate systems, c  is 
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the diagonal distance of the outer rectangle 
containing the real and predicted target frames, 
and   is the coefficient used for balancing the 
ratio as shown in Equation 4. v  is the distance 

between the height-width ratio 
gt

gt

w

h
 of the real 

coordinate frame and the height-width ratio 
w

h
 of 

the predicted coordinate frame, used to measure 
the height-width scale consistency as shown in 
Equation 5.In Equation 6, y  denotes the true label 

value, 
iy  and 1iy   denote the two closest values of 

y , respectively, and iS  and 1iS   correspond to the 

probabilities of the two values. 

IV. EXPERIMENTS 

A. Experimental Environment 

The experimental environment is shown in 
Table I 

TABLE I.  EXPERIMENTAL ENVIRONMENT 

Experimental environment Version 

CPU Intel Core i7-11800H 

GPU NVIDIA GeForce RTX307 

Language Python3.7 

Deep Learning Framework Pytorch1.11.0 

CUDA 11.3.0 

Compiler Pycharm2021 

B. Dataset 

The dataset in question is a PCB (printed circuit 
board) defect collection made available by the 
Open Lab of Peking University. The types of 
defects are missing hole, mouse bite, open circuit, 
short circuit, spur, and spurious copper, and it 
contains a total of 11,361 images. 

C. Evaluation Metrics 

When assessing single-target detection models, 
it's customary to utilize metrics such as accuracy 
and recall to gauge the model's detection efficacy.  
The accuracy rate is defined as the ratio of 
correctly identified actual samples to the total 
number of samples, while the recall rate represents 
the ratio of correctly identified actual positive 
samples to the total number of actual positive 

samples. The precise formulations for the accuracy 
rate P  and the recall rate R  are depicted in 
Equations 7 and 8, respectively. 

 
TP

P
TP FP




 (7) 

 
TP

R
TP FN




 (8) 

Within this evaluative measure, TP  signifies 
the count of positive samples rightly identified, 
FP  denotes the quantity of negative samples 
erroneously labeled as positive, and FN  indicates 
the number of positive samples mistakenly 
classified as negative. For a detection model, it is 
often desirable to have higher precision and recall, 
but it is often the case that a rise in one metric 
causes a fall in the other. In order to 
comprehensively assess the performance metric of 
a detection model, researchers introduce the P-R 
curve. The P-R curve is a curve that describes the 
change in the relationship between the model's 
accuracy and recall, and by determining the area 
beneath the curve, it can intuitively reflect the 
model's goodness or badness. 

In the assessment of multi-target detection 
models, the metric often employed to gauge the 
comprehensive efficacy is the Mean Average 
Precision (mAP).  This metric encapsulates the 
model's detection acuity across all categories.  The 
mAP score is derived from the average of the 
Average Precision (AP) for each category.  It 
mirrors the precision in detecting individual 
targets and is a function of the model's precision 
and recall rates.  The underlying computational 
expressions are illustrated in Equations 9 and 10. 

 1

0AP PRdR   (9) 

 
1

mAP Σ
i ic cAP

c
  (10) 
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D. Results 

To validate the detection capabilities of the 
models presented in this study, a comparative 
analysis with contemporary mainstream object 
detection methodologies was conducted.  The 
training of all models was carried out utilizing 
transfer learning techniques, with the COCO2017 
dataset serving as the pre-training dataset.   The 
outcomes of these experiments are documented in 

Table Ⅱ. 

TABLE II.  EXPERIMENTAL RESULTS 

Model mAP(%) FPS Quantity of participants /M 

Faster R-

CNN  
89.5 20.5 125.3 

YOLOv5 85.3 79.4 42.7 

YOLOv7 87.1 102.5 37.2 

YOLOv8 92.3 157.2 28.5 

The model introduced in this paper achieves 
superior overall performance regarding detection 
accuracy and speed, with a mAP of 92.3 and a 
detection rate of 157.2 frames per second (FPS), 
while only having 28.5 million parameters.  

Although the two-stage approach, Faster R-CNN, 
offers higher detection accuracy due to its 
maximum input image resolution, its large 
parameter count and slower computation make it 
less practical for real-world applications.  In 
contrast, single-stage models like YOLOv5 and 
YOLOv7 still trail behind YOLOv8 in both 
accuracy and speed.  These findings are presented 
visually in Figures 5 and 6. 

 

Figure 5.  Pcb defect detection effect 

 

 

Figure 6.  Loss, Precision, Recall, mPA0.5 and mAP0.5-0.95 curves 

V. CONCLUSIONS 

In this paper, we have explored the problem of 
PCB surface defect detection based on printed 

circuit boards. Traditional PCB defect detection 
methods such as expert visualization or machine 
vision have more or less limitations, and with the 
evolution of deep learning target detection 
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algorithms in full swing, the application of deep 
learning methods to the PCB defect detection 
problem is also a general trend. Due to the 
industrial production of PCB surface defects there 
are difficult to detect the problem, this paper 
carries out a series of analyses of the existing 
detection model, and finally in the experimental 
environment under the same conditions, for the 
detection model of YOLOv8 and the other 
mainstream detection models in the industry in the 
detection of the average accuracy of the average 
value, detection speed, model complexity and 
other indicators of the assessment of a 
comprehensive comparison of the experiments. 
Furthermore, the experimental results suggests that 
the YOLOv8 detection algorithm exhibits a 
significant enhancement in the mentioned metrics, 
demonstrating its relevance for identifying defects 
in electronic products.  This underscores its 
valuable research potential within the realm of 
object detection. 
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