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Abstract—During the path planning of robots in the 

indoor unstructured complex environment, there are 

often problems such as unreachable target points, 

deflection in the planning process, and failure to avoid 

dynamic obstacles in time. To solve these problems, an 

improved hybrid indoor path planning algorithm was 

proposed, wherein the improved global path planning 

algorithm was effectually integrated with improved local 

path planning algorithm. Firstly, the heuristic factor of 

traditional A-Star algorithm was optimized, search 

range and nodes were reduced, and then the path 

generated by traditional A-Star algorithm for path 

planning was smoothed using the angle bisector tangent 

point method. Secondly, combining path and 

environment information, local path planning was 

undertaken by utilizing the improved artificial potential 

field algorithm, and the unreachable target points 

problem was addressed by adjusting the repulsive field 

parameters. Additionally, dynamic potential field 

function was constructed to make it have the ability to 

resolve dynamic obstacles. Finally, in the part of actual 

environment verification, a comparison was made in this 

paper to assess the performance of the traditional hybrid 

algorithm against the improved algorithm in terms of 

path planning. The consequences showed that, by the 

hybrid algorithm proposed in this paper, the path 

planning length was reduced by 10.3%, the running time 

was decreased by 12.5%, and 34 redundant nodes were 

eliminated. The consequences indicated that the hybrid 

algorithm can effectively address the indoor 

unstructured and complex path planning problems. 
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Driven by the swift evolution of technology, 
indoor mobile robot path planning has become a 
topic of keen interest in the research community. 
In essence, mobile robot path planning is in the 
case of excluding human manipulation, the mobile 
robot identifies and processes the data obtained by 

the sensor, and calculates an optimal path which is 
safe and collision-free at the same time [1]. At 
present, the widely used global path planning 
algorithms currently include A-Star algorithm [2], 
D-Star algorithm [3], etc. Frequently applied 
algorithms for local path planning are the artificial 
potential field method [4], dynamic sliding 
window method [5], fuzzy logic method [6], etc. 
A-Star algorithm is a well-known global path 
planning algorithm, which is a heuristic algorithm 
[7] that mainly uses heuristic information to find 
the optimal path [8]. The optimal path is selected 
by the artificial potential field algorithm in a 
manner that the potential function decreases within 
the obstacles force field. 

The A-star algorithm excels in its direct search 
methodology, effectively delivering satisfactory 
planning solutions, but it is plagued by poor real-
time performance and issues such as deviation 
caused by turning angles. The artificial potential 
field method stands out as a prominent local path 
planning technique. It boasts simplicity in 
calculation and analysis, easy control, and superior 
real-time performance. However, it is prone to 
issues such as local minima and unreachable 
targets. Moreover, both of them cannot get 
satisfactory results in the treatment of dynamic 
obstacles. To address these problems, relevant 
scholars have proposed various improvements and 
optimizations to the algorithm. For instance, 
literature [9] described a bidirectional time-
efficient A-Star algorithm for path finding, 
employing a multi-neighbor grid distance 
calculation scheme to achieve improved efficiency 
and smoother paths. However, this approach tends 
to deviate during navigation when dealing with 
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large, complex maps. Literature [10] avoided 
generating paths through obstacle grid vertices by 
adding a priority-based child node generation 
strategy into the A-Star algorithm, but the path 
smoothness during navigation is not enough, 
which has certain security risks. Literature [11] 
improved the key node selection strategy of A-star 
algorithm, thus optimizing path planning in static 
environments to some extent, but still unable to 
resolve errors in dynamic environments. Literature 
[12] put forward an iterative searching strategy 
capable of skipping intermediate nodes, leading to 
a decrease in the number of accessed nodes and an 
enhancement in the overall speed of the algorithm. 
Nevertheless, the path still contains numerous 
turning points, prone to issues such as path drift. 
Literature [13] proposed an improved ant colony 
algorithm in global path search. The smoothness 
and calculation effect of path planning is more 
obvious than A-star algorithm, but the amount of 
data in the search process is too large to be 
suitable for equipment with poor performance. In 
terms of artificial potential field algorithms, 
literature [14] used the improved Pseudo-Dubins 
curve to smooth the path, which can obtain better 
local path calculation effect, but the calculation is 
cumbersome and the operation efficiency is poor. 
The study in literature [15] introduced a 
hierarchical modification technique to tackle the 
dynamic obstacle avoidance challenge in artificial 
potential fields, resulting in improved obstacle 
avoidance performance during movement. 
Nevertheless, it still faces issues of unreachable 
targets and local optima. Literature [16] proposed 
a method to introduce the motion direction of the 
robot as the control variable in the operation of the 
potential field function, which can effectively 
reduce the repulsion of obstacles other than the 
motion direction to the robot, eliminate the 
inaccessibility of unreachable target points, but 
increase the risk of robot collision. Literature [17] 
used a method of adding virtual sub target points 
to address the local minimum issue in potential 
field algorithms, but it has the shortcomings of 
comprehensive path planning error and excessive 
fold angle. 

Through the above research, it can be found 
that in indoor unstructured complex environments, 

the traditional A-Star algorithm tends to encounter 
path slippage and corner problems when dealing 
with global paths [18]; The traditional artificial 
potential field algorithm often fails to achieve 
optimal path planning results during local planning 
[19]. Therefore, an integrated path planning 
algorithm was presented in this paper, which 
combines an angle bisector tangent optimization 
for the A-Star algorithm with an enhanced 
artificial potential field method that constructs a 
dynamic force field. The improved fusion 
algorithm introduced ideas of angle bisector 
tangent points to perform global path planning 
based on the original A-Star algorithm. Moreover, 
for local planning, the utilization of an improved 
artificial potential field algorithm optimized the 
effect of obstacle avoidance when obstacles are 
detected during path traversal, achieving 
autonomous obstacle avoidance and overall path 
optimization. This results in a smoother path 
trajectory, a larger detection range, and a reduction 
in possible drift or errors in the path. 

I. IMPROVEMENT OF A-STAR GLOBAL PATH 

PLANNING ALGORITHM 

A. Grid map environment modeling 

The construction of a grid map is the premise of 
mobile robot to perform path planning. Grid map 
is popular among scholars because of its simplicity 
and easy implementation. In the grid map, each 
grid contains information about obstacle 
occupancy, and each occupancy information can 
be represented by a specific letter, where 0 
represents an occupied grid and 1 represents a free 
grid [20]. The grid size will affect the speed of 
path planning, so it is important to construct grid 
map reasonably. 

 

Figure 1. Raster map model 
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B. Traditional A-star algorithm 

A-Star algorithm, as a heuristic search 
algorithm, incorporates a heuristic factor function 
into the Dijkstra algorithm to steer its search 
direction, thus allowing it to compute globally 
optimal paths in static settings [21]. The 
evaluation function of the A-Star algorithm is: 

 ( ) ( ) ( ) f n g n h n   (1) 

The above formula is the evaluation function of 

A-Star algorithm. 
 g n

 is the estimated surrogate 
value from the starting node to the current node. It 
can usually be expressed by the Euclidean distance 
between two points. 

 2 2( ) ( ) ( )start end start endh n x x y y     (2) 

In the above formula,  start endx x  represents 

the abscissa distance between the current node and 

the target node, and  start endy y  represents the 

ordinate distance. 

C. Improvement of A-star algorithm 

The traditional A-star algorithm can plan an 
effective optimal path, but there are problems with 
too many redundant nodes and unsmooth paths. 
However, heuristic factor can effectively guide the 
search direction of the A-star algorithm. Therefore, 
this paper first optimized the heuristic factor 
function, and then smoothed the A-Star algorithm 
path. 

1) Optimization of heuristic factors 
Heuristic factor plays a key role in optimal path 

planning, which can guide the search direction of 
A-star algorithm. When ( ) 0h n  , A-star algorithm 

is equivalent to Dijkstra algorithm; When the 
estimated generation value of the heuristic factor 

( )h n  is less than the real cost value, the search 

range of A-star algorithm becomes larger and the 
number of search nodes becomes more, which can 
ensure the generation of the optimal path; When 
the estimated generation value of the heuristic 
factor ( )h n  is greater than the actual cost value, 

the search range of A-star algorithm becomes 
smaller, the number of search nodes becomes less, 
which cannot ensure the generation of the optimal 
path. Seeking more realistic path planning results, 
the optimized heuristic factor ( )h n  was introduced 

as follows: 

2 ,
( )

2 ,

s end s end s end s end s end

s end s end s end s end s end

y y x x y y y y x x
h n

x x y y x x y y x x

        
 

       

   (3) 

2) Smooth path processing 

 

Figure 2. A-Star algorithm smoothing processing diagram 

Since the traditional A-Star algorithm has an 
unsmooth path problem in the path planning 
process, the optimization method of tangent point 
of angle bisector was introduced to optimize the 
A-star algorithm, which helps generate smoother 
paths. The optimization model is shown in Fig. 2. 

Assuming that the initial node position of the 

mobile robot is  0 0,A x y , the turning point is 

smoothed in turn, and the turning points B and D 
are smoothed in turn until reach the end point 

 ,i iA x y . The following are the steps for path 

optimization: 
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Step 1: determine if the three points are 
collinear, that is, if the node is a turning point. 
Make a vertical line crossing the angle bisector at 
the previous node of the turning point. In the 

figure above, the slope of edge AB is 1k , the slope 

of edge BC is 2k , and the slope of the angle 

bisector of the turning angle is denoted as 'k . 
Where: 

 
3 2 12 1

1 2

2 1 3 2 1

, , n n
n

n n

y y y yy y
k k k

x x x x x x





 
  

  
 (4) 

According to the slope relation formula 
' '

1 2

' '

1 21 1

k k k k

k k k k

 


   
, the expression of the slope 

'

1k  of 1OB  is as follows: 

 
 1 2'2 '

1 2

2 1
1 0

k k
k k

k k


   


 (5) 

Then, the coordinates of the intersection point 

1O  is: 

 

 

 

'

1 1 1 1 2 2

0 '

1

'

0 0

1

               

x k y k k x y
x

k k

y k x x y

   
 




  

 (6) 

Step 2: make a circle with the vertical length as 

the radius through the intersection 1O , and judge 

whether there is an intersection with the tangent 
circle. The tangent circle equation is: 

    
2 2 2

0 0 0x x y y r     (7) 

The radius 0r  of the tangent circle is 

represented as: 

 2 2 2 2

0 0 1 1 0 0 1 0 12 2r x x y y x x y y       (8) 

Step 3: determine whether there is a next 
turning point. If it exists, return to step 1; 

Otherwise, replace the distance between nodes 
with an arc. 

Step 4: determine whether the optimized path 
contains every node from the path planned by A-
star algorithm. If so, optimization process 
completes; Otherwise, return to step 1. 

The following is a simulation experiment of the 
improved A-star algorithm on the grid model in 
Fig. 1 in MATLAB, where each grid in the 
abscissa and ordinate represents a distance of 1m. 
The verification results are as follows: 

 
(a)Before path smoothing 

 
(b)After path smoothing 

Figure 3. A-Star algorithm path smoothing results in 30×30 environment 

As evident in Fig. 3(b), compared to Fig. 3(a), 
the red trajectory was obviously smoothed and 
optimized in the trajectories of (12,12), (26,30) 
two meshes. By comparing various indicators in 
Table 1, it is evident that the improved A-Star 
algorithm effectively eliminated turning points, 
shortened the path length, improved path 
smoothness, reduced the time required to search 
for paths, and greatly reduced the number of nodes 
that need to be expanded during the path planning 
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process. This shows that the A-Star algorithm 
modified with the heuristic factor surpasses the 

traditional A-Star in smoothness of path planning, 
reliability, and in judging actual trajectories. 

TABLE I. COMPARISON OF THE EFFECTS OF A-STAR ALGORITHM IMPROVEMENT 

Algorithm Path length/m Time for path 

finding/s 

Number of 

expansion nodes 

Is there a turning 

point 

A-Star 22.42 5.9 166 Yes 

Improved A-Star 21.56 5.5 59 No 

 

II. IMPROVEMENT OF LOCAL PATH PLANNING 

ALGORITHM FOR ARTIFICIAL POTENTIAL FIELD 

A. Traditional artificial potential field algorithm 

Artificial potential field algorithm is a popular 
choice among local path planning algorithms. Fig. 
4 illustrates the force analysis conducted on the 
robot within this artificial potential field. 

 
Figure 4. Force analysis diagram of mobile robot 

Artificial potential field algorithm's core 
concept is implemented through the simulation of 
an imaginary force field, and its theoretical idea 
can be summarized as follows: the robot is 
abstracted into a particle with point charge in a 
virtual force field. The target node generates an 
attractive potential field that pulls the mobile robot 
towards it, while obstacles create a repulsive 
potential field that pushes it away. As the mobile 
robot draws closer to the target node, the 
gravitational field intensifies. Similarly, the 
repulsive force field will also increase when 
approaching an obstacle. Under the influence of 
both gravitational and repulsive potential fields, 

the mobile robot is propelled towards the target 
node and finally generates an optimal path that can 
avoid obstacles autonomously [22]. 

As the mobile robot enters the obstacle's range 
of influence, it is simultaneously influenced by 

both the repulsive force repF  of the obstacle as 

well as the attractive force attF  of the target point, 

resulting in the total force totalF  acting on the 

mobile robot, which determines its actual direction 
of movement [23]. For the artificial potential field 
represented in Fig. 4, the virtual force field size 
can be expressed in terms of the negative gradient 
of the potential field. Specifically, assuming that 
mobile robot is located in space m , the repulsive 
force received by mobile robot continues to 
increase when it approaches the obstacle, and the 
gravitational force it receives gradually decreases 
when it approaches the target point. Thus, the 
potential field function of mobile robot can be 
expressed as: 

      total att repE m E m E m   (9) 

In the above formula,  totalE m  is the total 

potential field force function of the robot located 

at m,  attE m  is the gravitational potential field 

function, and  repE m  is the repulsive potential 

field function. Similarly, below is the definition of 
the repulsive force field function utilized by 
mobile robots: 
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1

2

1 1 1
( )   ,

2( ) ( )

0                                                   ,

p

rep pobs

rep rep pobs pobs

pobs

p
k m m r

m m r m mF m E m

m m r


        

  

 (10) 

In the above equation, repk  is the gain 

coefficient of the repulsive field, pobsm m  is the 

Euclidean distance between the current robot 
position and the obstacle, r  is the repulsive radius, 
and p  is an adjustable parameter. 

Due to the presence of complex obstacle 
environments in practical environments, the total 
force field function can be modified to the sum of 
the gravitational function and the combined 
repulsive function, namely: 

 
1

( ) ( ) ( )
n

total att rep

i

E m E m E m


   (11) 

The net force experienced by the mobile robot 
at point 𝑚 in space can be expressed as: 

( )

1

( ) ( ) ( )
n

total m total att rep

i

F E m F m F m


     (12) 

B. Improvement of artificial potential field 

algorithm 

Through the above analysis, it can be seen that 
the artificial potential field algorithm has the 
advantages of easy implementation and high 
performance, but it is also prone to the problem of 

unreachable target points, and it cannot play a 
good role in identifying and avoiding local 
dynamic obstacles [24]. To address these 
limitations of the traditional artificial potential 
field algorithm, this paper proposed solutions. 
Firstly, the repulsion field parameters were 
modified to resolve the problem of unreachable 
target points. Secondly, to enable the algorithm to 
handle dynamic obstacles, a dynamic potential 
field function was constructed. This approach 
solved the problem of dynamic obstacle avoidance. 

1) Correction of repulsion field parameters 
Although the traditional artificial potential field 

algorithm is relatively easy to implement, when 
there are obstacles around target point and target 
point is within the range of obstacles influence, 
there may be a phenomenon where the target point 
is unreachable. To make the magnitude of the 
repulsive force change as the gravitational force 
changes with the distance, the repulsive force 
function was modified by referring to the 
gravitational potential field function. By 

introducing the relative position  
p

endm m , the 

repulsive force decreases continuously when it 
approaches the target point. The modified 
repulsion field function can be expressed as: 

21 1 1
( ) ( )   ,

2( )

0                                                  ,

p
rep end pobs

rep pobs

pobs

k m m m m r
m m rE m

m m r




 



   


 

   (13) 

In the above formula, repk  is the repulsion field 

gain coefficient, pobsm m  is the Euclidean 

distance between robot position and the obstacle, 
r  is the repulsion radius, and p  is an adjustable 

parameter. Based on the traditional gravitational 
potential field function, the relative position 

 
p

endm m  was introduced and the repulsive field 

parameters are adjusted. This made the repulsive 
force of the mobile robot decreased as it 
approached the target point. 
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With the negative gradient of the repulsive 
force field function signifying its intensity, the 

repulsive force can be expressed as: 

   
1 2  ,

0                  ,

rep rep
pobs

rep rep

pobs

F F m m r
F E

m m r
m m

  
  

 





   (14) 

Where: 

 
 

1
2

1 1
p

end
rep rep

pobs pobs

m m
F k

m m r m m

  
     

     (15) 

  

2

1
2

1 1

2

p
rep rep end

pobs

p
F k m m

m m r

 
      

     (16) 

The repulsive force 1repF  points to the direction 

of the robot from the obstacle. The repulsive force 

2repF  points to the target point from the robot. 

 
Figure 5. Modified repulsion field parameters force analysis 

The force analysis after adjusting the repulsion 
field parameters is shown in Fig. 5, where the x-
axis and y-axis represent the distance traveled, 
measured in meters. 

2) Construction of dynamic force field 
The artificial potential field being a blend of 

gravitational and repulsive fields, therefore, it is 
logical to divide the dynamic potential field into 
two sections: a gravity field based on relative 
velocity and a repulsion field based on relative 
velocity. 

Gravity field based on relative velocity: in an 
indoor unstructured environment, a mobile robot 
faces the challenge of path planning in the 
presence of dynamic obstacles. By adding a 
relative velocity term to the traditional 
gravitational potential field function, a dynamic 
gravitational potential field function is formed. 
The function for the relative velocity gravitational 
field can be formulated as: 

      
1 1

,
2 2

p p
att att end att endE m v k m m k v v    (17) 

In the above formula,  endv v  is the relative 

speed of the mobile robot to the target point in 

space m. attk  is the gravitational gain coefficient, 

p  is the adjustable parameter, endm  is the 

endpoint coordinates  ,end endx y , m  is the robot 

current point coordinates  ,x y , and  endm m  

represents the Euclidean distance between point m 

and the end point. 

Then the gravity function is expressed as: 
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       
1 1

,
2 2

p p
att att att end att end

p p
F m v E m k m m k v v

 
       (18) 

The gravity  attF m  points to the target point, 

and the size of the velocity gravity function 

 attF v  is related to the relative velocity between 

mobile robot and target point. 

Repulsion field based on relative velocity: 
similar to the dynamic gravitational force field, the 
relative velocity term is also added in the 

construction of the dynamic repulsive field. 
Additionally, considering that there may be 
dynamic obstacles in the environment, the relative 
velocity based on obstacles is added. Thus, the 
repulsion field function based on relative velocity 
is as follows: 

 

   

 

,   0

,                ,   0

0         ,

rep rep pobs

rep rep pobs

pobs

E m E v m m r and v

E m v E m m m r and v

m m r

    


   
  


   (19)

In which, 

    

2

1 1 1

2

p
rep rep end

pobs

E m k m m
m m r

 
     

(20) 

    
e

rep att pobsE v k v v   (21) 

 repE m  is the repulsion field function of the 

mobile robot in space m,  repE v  is the velocity 

field function.  pobs
v v  represents the moving 

speed of the mobile robot relative to the obstacle. 
e  represents a unit vector. Then the repulsion 
function is: 

   

 

 

( ) ,  and 0

, ,             ,  and v 0

    0           ,        

rep rep v pobs

rep rep rep pobs

pobs

F m F m m r v

F m v E m v F m m m r

m m r

    


     
  


  (22)

In which,   1 2rep rep repF m F F  : 

 
 

1
2

1 1
p

end
rep rep

pobs pobs

m m
F k

m m r m m

  
     

 (23) 

  

2

1
2

1 1

2

p
rep rep end

pobs

p
F k m m

m m r

 
      

(24) 

   e
rep repF v k   (25) 

For the purpose of confirming the validity of 
the improved algorithm, a 30m×30m grid was 
constructed in the MATLAB environment, and 
two sets of experimental comparisons were carried 
out to analyze the improved artificial potential 
field algorithm, comparing it with the traditional 
version. The first set of experiments selected the 
grid map environment in Fig. 1 for simulation 
comparison. The unit of horizontal and vertical 
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axes is m. As depicted in Fig. 6, these are the 
experimental results. 

 
(a) Artificial potential field algorithm 

 
(b) Improved artificial potential field algorithm 

Figure 6. Path planning comparison 

The second set of experiments was simulated, 
using red circles to represent obstacles set up, to 
test the path planning effectiveness of the two 
algorithms when encountering local obstacles. 

 
(a) Artificial potential field algorithm 

 
(b) Improved artificial potential field algorithm 

Figure 7. Complex obstacle test comparison 

Fig. 6 reveals that in a static setting, the 
improved artificial potential field algorithm 
achieves smoother path planning and more precise 
obstacle detection, outperforming the traditional 
approach. However, in the dynamic environment 
portrayed in Fig. 7, the traditional algorithm fails 
to navigate to the target due to challenges in 
obstacle recognition. The lengthy path and 
extended runtime depicted in Fig. 7(a) are 
symptomatic of the complex obstacle environment, 
which poses a challenge for the traditional 
algorithm. Fortunately, the enhanced algorithm 
overcomes this limitation. 

As Table 2 indicates, by modifying the 
repulsion field parameters, the challenge of 
inaccessible target points was conquered, the 
oscillation phenomenon was effectively eliminated, 
compared with the traditional artificial potential 
field algorithm. Its running time was reduced by 
13.92%, the path length was reduced by 4%. By 
way of comparative experiments, the efficacy of 
the improved artificial potential field algorithm 
was thoroughly validated. 

 

TABLE II. COMPARISON RESULTS OF IMPROVED ALGORITHM 

Experiment Name Algorithm Path length/m Run time/s Number of cycles 

Path planning testing 
APF 49.970710 6.186677 447 

IAPF 48.003037 5.430491 440 

Complex obstacle testing 
APF ∞ ∞ ∞ 

IAPF 51.519690 6.801836 451 
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III. HYBRID ALGORITHM SIMULATION 

EXPERIMENT AND RESULT ANALYSIS 

A. Principle of hybrid algorithm 

In indoor unstructured complex environments, 
neither the artificial potential field algorithm nor 
A-star algorithm is capable of accomplishing 
optimal path planning on its own. Consequently, 
this paper integrated these two path planning 
algorithms into a hybrid solution that combines the 
advantages of both and can complete the optimal 
path planning task. 

During the implementation process of the 
hybrid path planning algorithm, the following two 
problems should be considered: Firstly, when the 
mobile robot does not enter the obstacle's radius of 
influence, the optimized A-star algorithm is 
utilized to obtain global initial paths for global 
path planning; Secondly, utilizing this 
comprehensive global path as a foundation, it is 
necessary to determine whether there are any 
reserved nodes generated by A-star algorithm 
within the obstacle's range of influence. If there 
are, further reductions should be made. Fig. 7 
depicts the model for the hybrid path planning 
algorithm: 

 

Figure 8. Hybrid algorithm model diagram 

In Fig. 8,  1, ... ... , ip p are the path intermediate 

node of the A-Star algorithm, and r  is the radius 
of influence of the obstacles. Among them, 

1 2 3 4 5 6 7, , , , , ,p p p p p p p  are the reserved nodes of 

the optimized A-star algorithm. 

Assuming that the robot at time t  is located at 

point 1p , upon advancing to point 3p , the mobile 

robot comes under the influence of the artificial 

potential field algorithm. Since points 4p  and 5p  

fall within this influence, they are disregarded, and 

the next node 7p  is taken as the target point. 

The hybrid path planning algorithm proceeds in 
the following execution stages: 

1) Initialize map parameters; 

2) Carry out global path planning utilizing the 

A-Star algorithm, while documenting and 

storing the path nodes for future reference; 

3) Use node pruning strategy to retain key path 

nodes; 

4) Treat the key path nodes as local target 

points in turn. If the key target node is 

within the radius of the obstacle, the node is 

deleted and the next key node is selected as 

the target node; 

5) With the utilization of the improved 

artificial potential field algorithm, the robot 

systematically traverses from its current 

location to the next sub-target, ensuring 

accurate path planning; 

6) Check if the robot has completed its journey 

to the final target node. Stop if it has; 

otherwise, repeat step 5 for further route 

calculation. 

B. Simulation of experimental results of hybrid 

algorithm 

1) Experimental results in static environment 
The experiment used MATLAB to conduct 

simulation tests on the hybrid path algorithm. The 
experimental environment was also set as the grid 
map model depicted in Fig. 1. The experiment was 
carried out in both dynamic and static 
environments, grouped according to whether the 
obstacles are movable or not. The figure below 
demonstrates the experimental results. 

 

(a) the improved A-Star and the improved artificial potential field 
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(b) DWA 

 

(c) hybrid path planning algorithm 

Figure 9. Static path comparison diagram 

The above three sets of experiments were 
conducted in a static environment to compare the 
path planning information generated by the 
improved A-star algorithm, the improved artificial 
potential field algorithm, DWA algorithm, and the 
hybrid algorithm. The comparison was based on 
their respective planning path lengths, search path 
durations and ability to handle dynamic obstacles. 

As evident from Table 3 and Fig. 9, in the 
context of identical obstacles, the A-Star algorithm 
demonstrates an ability to plan a short path with 
rapid search speed during the path planning 
process, but it does not have the ability to 
dynamically avoid obstacles. Despite its longer 
planned path and increased search duration, the 
artificial potential field algorithm boasts the 
crucial capability of dynamically steering clear of 
obstacles, making it a practical choice for complex 
indoor navigation scenarios. By fusing the benefits 
of the two algorithms, the hybrid approach 
achieves not only a shorter search path and time 
but also the flexibility to handle dynamic obstacles 
effectively. 

TABLE III. ALGORITHM COMPARISON IN STATIC ENVIRONMENT 

Algorithm Path length/m Search time/s 
Does the algorithm have the ability 

to handle dynamic obstacles 

A-Star 45.36 6.72 No 

IAPF 48.00 10.43 Yes 

DWA 48.86 28.21 Yes 

Hybrid algorithm 46.54 8.14 
Yes 

 
2) Experimental results in dynamic 

environment 
The path planning experiment of the hybrid 

algorithm was conducted in a 30m×30m 
environment. In the dynamic environment, the 
parameters for obstacle avoidance were set to 
include a step increment of 0.1, a gravitational and 
velocity gain of 3, an obstacle detection radius of 3 
units, and a repulsive gain of 5. The predefined 
obstacle was programmed to traverse a path from 
the point (12, 17) to (16, 17). The figure below 
demonstrates the experimental results. 

 

(a) Dynamic appearance of obstacles 
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(b)Moving obstacles 

Figure 10. Dynamic path planning diagram 

The purple circles in Fig. 10(a) represent static 
obstacles that already exist, while the blue circles 
represent dynamic obstacles that appear randomly. 
In Fig. 10(b), green circles represent persistent 
dynamic obstacles, which move left and right 
between positions with ordinates of 3 and 17. 
These images compared the path under the hybrid 
algorithm with the static simulated global path to 
show the impact of the introduction of dynamic 
and moving obstacles on the return of the global 
path. In Fig. 10(a), the hybrid algorithm can 
effectively avoid dynamically appearing obstacles 
in the simulated indoor environment and return to 
the global path, ensuring the real-time nature of 
the path planning task. Mobile obstacles were 
introduced in Fig. 10(b). Mobile robot effectively 
avoided dynamic obstacles and returned to the 
global path, which effectively verified the 
effectiveness of the improved hybrid algorithm. 
Additionally, this enhancement significantly 
improved the real-time performance of path 
planning. 

C. Verification of hybrid algorithm experiment in 

real environment 

The robot platform in this paper was built on 
the Hands-free mobile robot platform. RPLIDAR 
A1 lidar was selected as the main ranging sensor. 
To steer the mobile robot's motions precisely, the 
OpenRE Board controller was selected as the 
primary control mechanism. According to the 
composition structure of the Handsfree_Stone_V3 
mobile robot, the various hardware parts were 
assembled. The finished assembly of 
Handsfree_Stone_V3 is shown in Fig. 11. 

The physical environment verification was 
conducted in a room with dimensions of 4.5 
meters in length and width. The laboratory was 
equipped with obstacles, and the test commenced 
from the doorway position. As shown in Fig. 12. 

 

Figure 11. Hands-free robot platform 

 

Figure 12. Actual test scenario 

This paper used Gmapping to complete the 
mapping of the actual environment of the Hands-
free robot. The mapping results and mapping 
parameters are shown in Fig. 13: 
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(a)Actual environmental mapping 

 

(b)Actual environmental mapping parameters 

Figure 13. Actual scene construction effect 

After completing the mapping of the actual 
environment as mentioned above, the next step is a 
comparative analysis of the path planning prowess 
of the traditional A-Star hybrid DWA algorithm 
and the improved A-Star hybrid improved 
artificial potential field algorithm presented herein. 
The comparison was executed in a real-life setting, 
mirroring actual environmental conditions. The 
figure below demonstrates the experimental results. 

 

(a)Starting position 

 

(b)Ending position 

Figure 14. A-Star Hybrid DWA algorithm path planning 

 
(a)Starting position 

 
(b)Ending position 

Figure 15. Improved A-Star hybrid improved artificial potential field 

algorithm 

The navigation effects in Fig. 14 and Fig. 15 
and the data in Table 4 show that, under the 
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condition of setting the same starting and ending 
points, by comparing the path length, search time 
and passing nodes number of the two path 
planning algorithms, it can be found that the 
hybrid algorithm proposed in this paper reduced 
path planning length by 10.3%, reduced the 

running time by 12.5%, and passed through 34 less 
redundant nodes. This proved that in real 
environments, the hybrid algorithm introduced in 
this paper offers distinct advantages in path 
planning over the traditional hybrid algorithm. 

TABLE IV. Results of algorithm comparison in real environment 

Path planning algorithm Path length/m Number of nodes passed 

through 

Search time/s 

A-Star Hybrid DWA 3.66 126 54.42 

Hybrid algorithm in this paper 3.24 92 48.36 

IV. CONCLUSIONS 

The objective of this paper is to primarily 
identify and enhance the weaknesses in the 
conventional A-Star algorithm and the artificial 
potential field algorithm, thereby optimizing their 
performance. Firstly, the heuristic factor of A-star 
algorithm was adjusted, and its redundant nodes 
were eliminated using the node deletion strategy. 
Simultaneously, the path turning points of A-star 
algorithm were smoothed. The search time was 
shortened effectively. Secondly, the deficiencies of 
the artificial potential field algorithm were 
addressed in static and dynamic environments 
separately. In the static environment, the target 
unreachable problem is solved by modifying the 
repulsion field parameters. In the dynamic 
environment, the relative speed term was 
introduced so that the speed of the mobile robot 
becomes smaller when approaching the obstacle 
and becomes larger when it is further away. The 
simulation results indicated that the hybrid 
algorithm efficiently addressed the path planning 
dilemma for mobile robots within a complex and 
unstructured indoor space. The improved 
algorithm’s running time was reduced by 13.92%, 
and the planned path length was reduced by 4%. In 
the part of actual environment verification, the 
path planning results between the traditional 
hybrid algorithm and the improved algorithm was 
compared. The results showed that the path 
planning length was reduced by 10.3%, the 
running time was decreased by 12.5%, and 34 
redundant nodes were eliminated by the hybrid 
algorithm presented in this paper, demonstrating 

greater efficiency than the traditional hybrid 
algorithm. 
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