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Abstract—This research focuses on the study of agent 

behavior decision-making based on hippocampal 

cognitive functions, aiming to enhance the decision-

making capabilities of agents in complex task 

environments by deeply exploring the crucial role of the 

hippocampus in learning, memory, and cognitive 

processes. By drawing inspiration from the biological 

structure and functional characteristics of the 

hippocampus, researchers are dedicated to designing 

and developing more intelligent and adaptive decision-

making models to enhance agents' behavioral 

performance, problem-solving abilities, and adaptability 

to new situations. To achieve this goal, the research 

integrates advanced artificial intelligence technologies 

such as reinforcement learning and deep learning to 

simulate the complex functions of the hippocampus in 

memory encoding, storage, retrieval, and cognitive 

reasoning. This research not only contributes to 

advancing intelligent systems towards higher levels of 

intelligence and personalization but also plays a 

significant role in improving the interaction between 

intelligent agents and humans, providing intelligent 

services that better meet user needs. We found that the 

neural network trained in multi-task learning benefits 

from a loss term that promotes relevant and irrelevant 

representations. Therefore, the complementary coding 

we found in CA3 can provide extensive computational 

advantages for solving complex tasks. Furthermore, the 

study emphasizes the importance of further elucidating 

the functional mechanisms of the hippocampus, with the 

expectation of providing a more solid theoretical 

foundation for the optimization and refinement of agent 

decision-making models in the future. 
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Memory Encoding 

I. INTRODUCTION  

The human brain is a general intelligence 
system consisting of hundreds of billions of 
neurons and millions of trillions of synaptic 
connections, endowed with the abilities of 

perception, learning, reasoning, and decision 
making. Cognition refers to the brain's perception, 
understanding, and memory of external stimuli, 
while decision-making involves the selection of 
actions based on cognitive information. Cognitive 
decision-making is the process of choosing the 
best course of action through thinking, analyzing, 
and evaluating information. It engages our 
capabilities of thought, perception, memory, and 
reasoning. 

When making decisions, this paper may be 
influenced by cognitive biases, leading to 
irrational choices. In recent years, the intersection 
of cognitive neuroscience and artificial 
intelligence has become increasingly close, 
particularly in applying profound insights from 
neurobiology to decision-making systems in 
intelligent agents, where significant progress has 
been made. This trend is deeply inspired by the 
efficient decision-making abilities exhibited by 
humans and other advanced organisms in complex 
environments. These organisms can quickly make 
complex inferences from limited information and 
flexibly integrate new knowledge to optimize their 
behavior, a capability crucial for building more 
intelligent and adaptive intelligent agents. 

The hippocampus, as the core region of the 
brain responsible for memory formation, storage, 
and retrieval, has unique cognitive functions that 
have become a key source of inspiration for 
designing decision-making models in intelligent 
agents. Researchers are dedicated to unraveling 
the complex structure and functions of the 
hippocampus, especially how it interacts with 
other brain regions (such as the Para hippocampal 
gyrus, parietal lobe, frontal lobe, and cerebral 
cortex) to support advanced cognitive tasks. By 
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simulating these intricate characteristics of the 
hippocampus, researchers aspire to develop 
advanced intelligent agent models that possess the 
capability to make precise and adaptable decisions 
within highly complex and ever-changing 
environments, mirroring the decision-making 
process exhibited by humans in their natural 
surroundings. 

II. RELATED WORKS 

A. Function and Morphology of the Hippocampus 

Unlike the neocortex, the hippocampus and its 
adjacent dentate gyrus belong to the archicortex, 
featuring a three-layered cellular structure 
consisting of the molecular layer, the pyramidal 
cell layer, and the polymorphous cell layer. Based 
on its organizational characteristics, the 
hippocampus can be further divided into four 
regions: CA1, CA2, CA3, and CA4. CA1 and 
CA2 are located on the dorsal side of the 
hippocampus, while CA3 and CA4 are situated on 
the ventral side. The hippocampus, together with 
its nearby dentate gyrus, subiculum, 
parahippocampal gyrus, and cingulate gyrus, 
forms a structural and functional unity known as 
the hippocampal formation. The hippocampal 
formation has direct fiber connections with the 
septal area, entorhinal cortex, and the mamillary 
bodies of the hypothalamus through the fornix, 
fimbria of the hippocampus, and perforant path. 
The dentate gyrus of the hippocampal formation 
directly receives neural information from the 
amygdala, other limbic cortices, and the neocortex 
via the perforant path emanating from the 
entorhinal cortex. After receiving neural 
information from these brain structures, the 
dentate gyrus sends fibers to CA3 and CA4, from 
which axonal collaterals (Schaffer collateral fibers) 
of CA3 and CA4 neurons terminate in CA1 and 
CA2 of the hippocampus. Although the fornix 
primarily consists of efferent fibers from the 
hippocampal formation, it also contains 
cholinergic afferent fibers from the medial septal 
nucleus as well as serotonergic and noradrenergic 
fibers originating from the brainstem. The main 
efferent fibers of the hippocampal formation 
originate from the CA1 and CA2 regions, reaching 
the mamillary bodies of the hypothalamus, the 
anterior thalamic nuclei, and the lateral septal 

nucleus via the fornix. The efferent fibers from the 
CA1 and CA2 regions also terminate in the 
subiculum. Among these connections in the 
hippocampal formation, the majority of synapses 
use amino acid substances as neurotransmitters, 
primarily glutamate and GABA. Two noteworthy 
circuits are the classic Papaz's circuit and the 
trisynaptic circuit. 

B. The trisynaptic memory circuit of the 

hippocampus  

It was first reported by Lomo in 1966, who 
described a phenomenon he termed long-term 
potentiation (LTP) occurring in the trisynaptic 
circuit of the hippocampus. This discovery 
subsequently gained widespread attention due to 
its relevance to the brain mechanisms of memory. 
The trisynaptic circuit initiates within the 
entorhinal cortex, where neuronal axons coalesce 
to create the perforant pathway, ultimately 
terminating on the dendrites of granule cells 
located in the dentate gyrus. This constitutes the 
first synaptic link. Subsequently, the axons 
emanating from these granule cells in the dentate 
gyrus transform into mossy fibers, which establish 
synaptic connections with the dendrites of 
pyramidal cells residing in the CA3 area of the 
hippocampus, thereby forging the second synaptic 
junction. 

 The axons of the pyramidal cells in the CA3 
region send collaterals to make the third synaptic 
connection with pyramidal cells in the CA1 region. 
From there, pyramidal cells in the CA1 region 
project back to the medial entorhinal cortex. This 
trisynaptic circuit, connecting the dentate gyrus, 
entorhinal cortex, and hippocampus, possesses 
unique functional properties and was initially 
considered evidence supporting the mechanism of 
long-term memory. 

C. Small loop of hippocampal CA3 

The hippocampus serves as the cornerstone of 
our ability to form episodic memories, enabling us 
to narrate personal experiences from our daily 
lives. The sensory information pertinent to 
memory storage travels through the entorhinal 
cortex (EC), functioning as the primary gateway or 
initiating point, serves as the cornerstone of the 
trisynaptic circuit. conduit between the 
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hippocampus and the neocortex. The anatomy and 
physiology of the hippocampus intertwine with 
fundamental attractor network theory, which 
encompasses two key findings: Tsodyks and 
Feigel's discovery the capacity to store sparse, 
uncorrelated patterns in abundance is 
complemented by Fontanari's insight, which 
suggests that dense, correlated patterns can 
coalesce into representations embodying shared 
characteristics. Both these forms of representation 
can harmoniously coexist and be retrieved within 
the same neural network, contingent upon a certain 
threshold being met. serving as the selector 
between them. 

Neurons in layer II of the EC project to the 
CA3 region via two distinct pathways, as depicted 
in Figure 3. One pathway directly synapses with 
the distal dendrites of CA3 pyramidal cells via the 
perforant path (PP). The alternative route sees the 
PP axons branching off to the dentate gyrus (DG) 
before reaching CA3, where they form synapses 
with granule cells [1]. These granule cells, in turn, 
extend mossy fibers (MF) that establish synaptic 
connections with the closer, proximal dendrites of 
the pyramidal cells located in the CA3 region. 
Regarding the identical sensory data, two distinct 
representations emerge, each endowed with One is 
sparse and decorrelated, achieved through the 
mediation of mossy fibers (MFs), while the other 
is dense and correlated, facilitated by the perforant 
path (PP).  

III. ALGORITHMS MODEL 

A. Description of the problem 

The CA3 subregion of the hippocampus is 
recognized the hippocampus operates as an 
autoassociative network, encoding experiences 
into enduring memories. The raw data pertaining 
to these experiences stems both directly from the 
entorhinal cortex and indirectly, via the dentate 
gyrus which acts as a filter, performing 
sparsification and decorrelation. The 
computational goals pursued by these dual input 
routes can be rephrased as enhancing the 
efficiency and accuracy of memory encoding. 
have yet to be conclusively determined. Here, this 
project conceptualizes CA3 as a Hopfield-
analogous network, proficient in accommodating 

both dense, correlated encodings and sparse, 
uncorrelated ones. As the number of memories 
accumulates, the dense encodings tend to coalesce 
around common features, while the sparse 
encodings maintain their individuality. 

This project emulates the transformation of 
memory representations as they traverse the two 
pathways from the EC to CA3, and explore how 
these transformed encodings are subsequently 
stored and retrieved within CA3. Additionally, the 
hippocampus plays a pivotal role in recognizing 
similarities and patterns across disparate 
experiences, thereby enhancing cognitive 
processes. By modeling the hippocampal network, 
this work initially hypothesizes that MF (mossy 
fiber) encodings and PP (perforant path) encodings 
in CA3 can preserve distinctions between 
memories while enabling generalization among 
them [2]. Our goal is to delve into whether an auto 
associative network possesses the capability to 
preserve and recall memory encodings originating 
from both pathways, this paper conduct our 
investigation., enabling information representation 
at different scales that allows the network to both 
differentiate between instances and generalize 
across them. Through training an artificial neural 
network, this work ultimately demonstrates that 
these encoding types are suited to performing 
complementary tasks of instance recognition and 
concept classification. This approach enables a 
more intricate and nuanced comprehension. 
Hippocampus processes and integrates information, 
ultimately contributing to a deeper understanding 
of its functional role in memory storage and 
retrieval. contributes to memory formation and 
retrieval. 

B. CA3-inspired Complementary Coding Model 

Transition of Memory along the Hippocampal 
Pathway, from Image to Binary Autoencoder in 
EC, FNN Network from EC to CA3, visualizing 
Pathways from CA3 back to EC. The Hopfield-
like Model in CA3. 

The Hopfield neural network functions 

similarly to a memory storage device. When 

multiple sequences or images are input into this 

network, it stores this information in the form of 
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connection weights between neurons. Upon re-

inputting the same or partially corrupted original 

sequence/image, the network is capable of 

restoring (recovering) the sequence/image. Figure 

1 is a network model. 

 

Figure 1. CA3 Hopfield-like model 

The Hopfield-like network stores both sparse, 
uncorrelated encodings and dense, correlated 
encodings [3]. As more memories are stored, the 
former tend to remain distinct, while the latter 
merge along shared features. During its dynamic 
evolution, the Hopfield network converges 
towards stable states, which are the attractors of 
the network [4]. The design of network weigh and 
the initial state determine which attractor the 
network ultimately converges to. At Figure 2. In 
an auto-associative network, the attractor basins 
of the former tend to remain independent, while 
those of the latter tend to merge. 

 

Figure 2. Basin of Attraction 

Pattern storage: The Hopfield-like model of 
CA3 serves as a mechanism for pattern storage, 
where it retains the information by encoding the 
linear combination of patterns originating from 
the medial entorhinal cortex (MF) and the 
perforant path (PP).  

     1 MF PP
i i MF i PPq x a x a          

The PP pattern ζ = 0.1 stands out in terms of its 
comparative intensity. A defining aspect of 
Hopfield networks with binary neural states.0 and 
1 is the subtraction of a density value from each 
pattern. The PP inputs have a notably weaker 
intensity compared to others, stemming from their 
more remote positioning (PP distal synapses) and 
the fact that they are empirically weaker than MF 
synapses (which are located on proximal 
dendrites).  

These inputs undergo linear summation and are 
Architecture that is defined by its 
interconnectivity pattern, with i and j serving as 
indices for post-synaptic and pre-synaptic neurons, 
respectively. 

    0.9 0.1 0.9 0.1MF PP MF PP
ij i i j jW x x x x   

  

The process of pattern retrieval involves 
generating a cue by randomly altering the 
activation state of 0.01 of the neurons in the target 
pattern, a quantity that is termed cue inaccuracy 
[5]. Throughout the retrieval phase, neurons 
undergo asynchronous updates in iterative cycles, 
where each neuron is updated once per cycle in a 
random sequence. At any specific instant in time, 
denoted as t, the cumulative synaptic input 
represents the aggregated electrical signals 
received by a neuron from its presynaptic 
counterparts. stored within a Hopfield-like 
network.  

       i ij j ij
g t W S t h t   

C. Model Loss function 

The conversion of memory through the 
hippocampal pathway involves an image being 
encoded into a binary autoencoder form within the 
EC. In Figure 3, this project constructed and 
trained a comprehensive fully connected linear 
autoencoder architecture, comprising three 
strategically sized hidden layers (128, 1024, 128), 
each tailored to facilitate efficient information 
encoding and decoding.  
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Figure 3. AE Network Architecture 

To ensure swift and stable learning dynamics, 
this work incorporated batch normalization into 
each layer. Mitigating internal covariate shift and 
accelerating the training process. For nonlinearity, 
the ReLU function was applied to the first and 
third hidden layers, while the Sigmoid function 
was reserved for the output layer. Critically, the 
activations within the intermediate hidden layer 
underwent binarization through the Heaviside step 
function, with gradient flow maintained during 
backpropagation via the straight-through estimator. 
The overall optimization was guided by a 
specified loss function. 

 2 1
1̂ EC

i ECi
Ecbatch bat h G

i KL x a
N

    
 

    
 

  


I represent the original images, comprising 
pixel intensities spanning a spectrum from 0 to 1, 
and its reconstructed counterpart. x denotes the 
binary activations within the intermediate hidden 
layer, facilitating a sparse representation. And with 
an expected density of a=0.1, this paper employ 
sparsification with an intensity that evaluates the 
Kullback-Leibler (KL) divergence—a metric 
comparing the density of the hidden layer 
activations to the desired target density. Through 
this process, this project obtains the desired λ 
value of 10, which effectively achieves the 
expected sparsity level. 

The central characteristic of the CA3 model lies 
in its activity threshold, which dictates whether the 
network retrieves example-based encodings or 
concept-based encodings. The project postulates 
the theta oscillations in the CA3 region, as a 
fundamental neural rhythm, not only embody 
pivotal threshold but also dynamically. Orchestrate 
fine-tuning of memory retrieval, enabling the brain 

to access and retrieve information from a broader 
or narrower range of memories, depending on the 
specific context and cognitive demands. This 
process is intricately intertwined with synaptic 
plasticity and network connectivity, facilitating the 
adaptive adjustment of memory representations to 
better serve the organism's current needs and goals. 
The work introduces a plug-and-play loss function. 
That endows artificial neural networks with the 
comprehensive ability to represent both complex 
and diverse data patterns. pattern-separated (PP) 
and pattern-completed (MF) classes. Compared to 
networks with solely rely on a single 
representation type, these networks, by virtue of 
their ability to integrate diverse information 
through multiple representation types exhibit 
superior performance in multitask learning. 

The DeCorr loss function addresses the issues 
of oversmoothing and excessive feature 
correlation by reducing the correlation between 
features. Consequently, the paper applies the 
DeCorr loss function to decorrelate encodings in 
the final hidden layer, mimicking the MF (sparse 
and decorrelated) mode observed in CA3. The 
exclusion of the encoding loss function ensures 
that the encoded representations preserve the 
intrinsic image correlations and patterns. DeCorr 
simulates the MF pathway by considering the 
baseline condition where there is no loss function 
applied to hidden layer activations, thus preserving 
the natural correlations between similar images 
and mimicking the PP pathway. 

  
2

,

1
,

2
DeCorr batch

Pearson s s  
  

It has been observed that different encoding 
properties are suited for distinct tasks. The 
baseline network excels in conceptual learning, 
whereas the DeCorr network typically performs 
better in exemplar learning but struggles with 
conceptual learning. To address this, the project 
applies the HalfCorr loss function, which 
decorrelates encodings only in the latter half of the 
final hidden layer. The introduction of the 
HalfCorr loss function diversifies the hidden layer 
representations, incorporating both correlated and 
uncorrelated components. As a result, HalfCorr 
networks are better equipped to learn tasks that 
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involve distinguishing between similar inputs and 
generalization. 

HalfCorr networks demonstrate high 
performance in both tasks. Drawing parallels to 
the CA3 model, the paper find that exemplars are 
the decorrelated MF pathway is biased towards. 
Encoding information in a way that enhances 
discrimination and minimizes overlap among 
different elements. while concepts are 
preferentially encoded correlated PP pathway. 

  
2

,

1
,

2

halfhalf
HalfCorr batch

Pearson s s  
  

representing the latter half of the neurons 
in the final hidden layer. The DeCorr network 
excels in exemplar learning but suffers from 
inferior performance in conceptual learning, a 
trade-off that does not affect the HalfCorr network. 
The HalfCorr network displays high performance 
in both tasks, demonstrating an ability to prioritize 
the use of each type of encoding for tasks it is 
better suited for. The work comprehensively 
quantifies the impact of individual neurons on 
various tasks by precisely measuring the 
decrement in task accuracy that ensues upon their 
silencing. This approach offers a nuanced 
understanding of how each neuron contributes to 
the overall performance. Furthermore, DeCorr, an 
innovative technique, empowers us to delicately 
modulate the encoding correlations within 
artificial neural networks, thereby amplifying the 
salience of input features that are crucial for 
accurate predictions. 

By strategically aligning the computational 
requirements of diverse tasks with the optimal 
encoding scales tailored for each, DeCorr 
facilitates a more efficient resolution of these tasks. 
This alignment ensures that the network's 
resources are allocated effectively, enhancing both 
speed and accuracy. Notably, correlated neurons 
within these networks exhibit a pronounced 
influence on conceptual learning, facilitating the 
extraction of abstract representations that 
generalize across examples. Conversely, 
decorrelated neurons play a pivotal role in 
exemplar learning, capturing specific details that 
distinguish individual instances within a category. 

By leveraging the complementary strengths of 
correlated and decorrelated neurons, DeCorr 
promotes a balanced and flexible learning strategy 
that is well-suited to tackle a wide range of 
complex tasks. This approach not only advances 
our theoretical understanding of neural network 
behavior but also has practical implications for 
designing more efficient and robust machine 
learning systems. The work proposes a distinct 
paradigm where loss functions are applied to 
distinct neurons 

Fosteringthe principle of heterogeneity within a 
layer can be enriched by tailoring the degree of 
decorrelation for individual components or 
clusters within the HalfCorr network [6]. 

IV. EXPERIMENTS 

A. Experimental Environment 

In the experiments, the performance of the 
cognitive algorithm inspired by hippocampal 
memory designed in this paper is evaluated, and 
its properties are analyzed [7].  

Firstly, the sample efficiency project 
undertakes a comparative assessment to gauge 
how the novel algorithm fares against previous 
conventional neural networks. All experiments are 
implemented on an RTX3060 GPU with 16GB of 
VRAM and a CPU running at 14.4 GHz, utilizing 
Pytorch and NVIDIA CUDA. 

B. Dataset 

In our model utilizing the Fashion-MNIST 
dataset, the sensory input encoded as memory 
consists of Fashion-MNIST images. The memory 
comprises 256 images from each of the categories 
of sneakers, trousers, and coats. These memories, 
which are Fashion-MNIST images, serve as 
exemplars representing individual concepts. 

C. Train the network 

To evaluate the performance of a cognitive 
algorithm inspired by hippocampal memory, the 
project compared it with traditional classification 
and recognition algorithms using the MNIST 
dataset. The paper normalized images, randomly 
assigned set numbers, and trained a multi-layer 
perceptron to either classify digits or identify sets. 
The network was trained on a subset of images 
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and evaluated on a test set for digit classification 
and on corrupted images from the training set for 
set identification. Classification requires clustering 
images based on common features, akin to concept 
learning in our CA3 model, while distinguishing 
differences among similar images necessitates 
example learning, similar to our CA3 model  
[8].The project used stochastic gradient descent 

with a batch size of 50 and a learning rate of 1e−4. 

Comparative Experiment:  

D. Some Common Mistakes 

  Traditional Classification Algorithms: The 
work utilizes the same dataset to train 
various traditional classification algorithms, 
including but not limited to Support Vector 
Machines, Decision Trees, and Random 
Forests, and subsequently evaluate and 
compare their performance on the test set. 

  Hippocampal Memory Mechanism 
Simulation: In addition to directly training 
hippocampal-inspired cognitive model for 
classification, one can also attempt to 
introduce mechanisms into the model that 
simulate characteristics of the hippocampus, 
such as employing specific loss functions or 
regularization terms to encourage the 
network to learn sparse, uncorrelated 
representations (analogous to mossy fiber 
(MF) coding) or dense, correlated 
representations (analogous to perforant path 
(PP) coding)  [9].  

Dots indicate means, bars show SD of networks. 
The DeCov loss, developed to reduce overfitting, 
aids numerical convergence. DeCorr decorrelates 
input pairs for all neurons in a layer, while DeCov 
decorrelates neuron pairs across all inputs. At 
Figure 4 and Figure 5, as a generalization-boosting 
regularizer, DeCov enhances digit classification 
but not significantly set identification, contrasting 
DeCorr's effect. DeCorr impairs concept learning 
but boosts instance learning. The paper trained an 
MLP for concurrent digit classification & set 
identification. Compared to baselines, DeCorr 
networks often excel in instance learning but 
underperform in concept learning. The project 
train until >99.9% accuracy on the training set. 

 

 
Figure 4. Comparison Chart of DeCov under MF Modes 

 
Figure 5. Comparison Chart of DeCov under PP Modes 

Using the decrease in task accuracy after 
neuron silencing as an indicator of its impact, the 
work found that correlated neurons have a greater 
influence on concept learning, while decorrelated 
neurons impact instance learning more 
significantly. The average drop in accuracy across 
each neuron in the network reveals their respective 
contributions to both learning modalities. For all 
results, p-values were calculated using an unpaired, 
two-tailed t-test. 

As can be seen from Figure 6 and Figure 7, 
Correlated neurons (orange bars) exhibit a stronger 
influence on concept learning can reach 
0.00077613, whereas decorrelated neurons (purple 
bars) have a more pronounced effect on instance 
learning) can reach 0.0037056 [10]. For all results, 
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p-values were calculated using an unpaired, two-
tailed t-test. 

 
Figure 6. The impact of neurons on concept learning 

 

 
Figure 7. The impact of neurons on exemplar learning 

V. CONCLUSIONS 

 In this paper, these novel agent models will not 
merely enhance performance in specific tasks but 
also propel intelligent systems towards greater 
intelligence, adaptability, and personalization. 
They will excel at comprehending and adapting to 
ever-evolving environments, offering more 
tailored and user-centric intelligent services. 
Furthermore, this interdisciplinary integration will 
pave new avenues for improving the interaction 

between intelligent systems and humans, fostering 
a harmonious coexistence between man and 
machine. 

However, it is crucial to acknowledge that 
despite remarkable advancements, the precise 
functions of the hippocampus and its intricate 
relationship with overall cognitive processes 
remain a complex and incompletely unraveled 
domain. As such, future research endeavors will 
continue to delve deeper into the working 
mechanisms of the hippocampus, aiming to refine 
and optimize agent decision-making models, 
thereby propelling artificial intelligence 
technology to even greater heights. 
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