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Abstract—With the rapid development of computer vision 

and artificial intelligence technologies, indoor scene 

reconstruction has been more and more widely used in the 

fields of virtual reality, augmented reality and 

architectural design. In this paper, we study an indoor 

scene reconstruction method based on the 3DGS model, 

which has been widely used in computer graphics and 

vision processing with powerful scene representation and 

rendering capabilities. In this study, we optimize the 

3DGS model to enhance the detail preservation and 

realism of the reconstruction results by adjusting the 

opacity of the Gaussian function. We used the Replica 

dataset and the self-harvested dataset for model training. 

Through experimental validation, the peak signal-to-

noise ratio as well as the structural similarity ratio of the 

reconstruction results of the optimized model have an 

improvement effect of more than 1%, which indicates 

that the optimized model has a significant improvement 

in detail retention and realism, and the reconstructed 

scene performs more realistically in terms of texture 

details and light and shadow effects. 
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I. INTRODUCTION 

In recent years, there are more and more 
demands for indoor refined 3D models in smart 
cities, cultural relics protection, indoor navigation, 
virtual reality, etc. 3D reconstruction of indoor 
scenes has become one of the important research 
topics in the field of computer vision and computer 
graphics. Scene 3D reconstruction refers to the 
acquisition of image or video data of the indoor 
environment, the use of computer vision 
technology and 3D reconstruction algorithms to 
analyze the image content and geometric 
information, to infer the layout of the room, the 
position and size of the furniture, the geometry of 

the walls and floors and other structured 
information, and ultimately to construct a real 
indoor 3D model.  

Traditional scene reconstruction methods rely 
on camera position and pose information as well as 
data from depth sensors, but these methods usually 
suffer from limitations in real-time, accuracy, and 
cost. With the advent of the 3DGS algorithm, it 
enables high-quality real-time rendering and scene 
optimization by efficiently modeling the scene 
using Gaussian functions. The technique starts from 
a sparse point cloud, represents the scene as a 
differentiable 3D Gaussian set, and constructs an 
accurate and compact representation of the scene by 
optimizing its properties such as position, opacity, 
and covariance. During the rendering process, the 
3DGS algorithm utilizes fast GPU sorting and tile-
based rasterization to achieve efficient visibility-
aware rendering with anisotropic splash support, 
thus achieving real-time rendering while ensuring 
rendering quality. 

In this paper, we will use 3DGS based algorithm 
to reconstruct the indoor scene, which can 
reconstruct the complex indoor scene efficiently 
and reliably. And the model is trained on Replica 
dataset as well as self-collected dataset and further 
optimized. The experimental results show that the 
performance of the model is improved. 

II. RESEARCH BACKGROUND 

In recent years, 3D scene reconstruction 
technology has made significant progress in the 
fields of computer graphics and computer vision, 
which refers to the transformation of two-
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dimensional image or video data into interactive 3D 
models through computer vision, 3D reconstruction, 
deep learning and other technical means. This 
process involves multiple technical fields, 
including computer graphics, image processing, 
machine learning, etc. and aims to accurately 
restore the physical space and generate 3D digital 
models with a high degree of realism. 

The 3D scene reconstruction technique mainly 
includes several steps of data acquisition and 
processing, feature extraction, 3D reconstruction, 
and result optimisation. Among them, the dataset is 
mainly categorized into point cloud, mesh and 
voxel, and the 3D reconstruction mainly includes 
indoor scene reconstruction based on deep learning 
and 3D reconstruction by traditional methods. 
PointNet [1], a deep learning network that directly 
processes point cloud data, proposed by researchers 
at Stanford University, provides an effective 
solution for 3D reconstruction of indoor scenes. 
NeRF Neural Radiation Field, an emerging 
technique proposed by Ben Mildenhall et al [2], 
utilizes a neural network model to achieve fast 
reconstruction and rendering of indoor scenes by 
training on captured scene images to learn attributes 
such as lighting, material, and depth of the scene, 
and then generating realistic images of new 
perspectives. Neural radiation fields have become 
an important area of research in subsequent 
research efforts. The main ones include D-NeRF [3], 
which is able to learn dynamic deformable fields 
from image view sequences, NSFF [4], a scene flow 
field algorithm for the free synthesis of spatio-
temporal views of dynamic scenes, NeRV [5], a 
neural reflective and visible field algorithm for 
view and illumination resynthesis, and GIRAFFE 
[6], a composable generative feature algorithm for 
editable scene representations. While all of the 
above techniques can be reconstructed for different 
scenes, the aforementioned neural radiation field 
models are mainly deep convolutional neural 
networks, which take much longer to train 
compared to traditional shader and illumination 
techniques, possibly several times longer than these 
techniques. It also requires significant 
computational resources to support its training and 
rendering process. 

Recently, a 3DGS technique based on neural 
radiation field was proposed by Bernhard Kerbl et 
al [7], which has attracted much attention due to its 
high efficiency and real-time performance. This 
technique realizes efficient reconstruction and real-
time rendering of the scene by utilizing the 
Gaussian function to represent the spatially 
continuous distribution of the data, which provides 
a new way of thinking for the reconstruction of the 
indoor scene. The 3DGS technique has already 
shown its advantages in accurate modeling and 
detail 3DGS technology has demonstrated its 
advantages in accurate modeling and detail 
preservation. It not only preserves the geometric 
information of the scene, but also retains the rich 
texture and lighting effects during the rendering 
process. 

In conclusion, with the continuous development 
of research and technology, the advantages of 
3DGS algorithm in terms of accuracy, real-time and 
efficiency will become more and more significant. 
These advantages will not only improve the quality 
of indoor scene reconstruction, but also bring more 
possibilities for interior design, virtual reality, 
augmented reality and many other fields. At the 
same time, the continuous progress of 3DGS will 
not only change the way we understand and utilise 
interior space, but also provide a broad stage for 
future technological applications and innovations. 

III. INDOOR SCENE 3D RECONSTRUCTION  

Indoor scene reconstruction using 3DGS mainly 
includes the following steps: data acquisition and 
processing, indoor scene reconstruction and model 
optimisation. Data acquisition is to collect data 
from the scene to be reconstructed by using the 
shooting tool, and then the collected data are 
preprocessed to be converted into SfM point cloud 
data, and the scene reconstruction results are 
obtained by training the 3DGS model. The process 
of reconstruction is shown in Fig. 1. 
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Figure 1. 3D Reconstruction Process Map. 

A. Data Acquisition And Processing 

Considering the scene equipment variability of 
the shot, after converting the shot into a continuous 
image, the denoising process is performed on this 
continuous set of images. Common image noise 
processing schemes mainly include mean removal 
filter for mild noise, Gaussian filter for Gaussian 
noise, and bilateral filter for filtering noise while 
preserving image edge information. Therefore, we 
introduce bilateral filtering to preprocess the data, 
and realize the removal of noise and smoothing of 
local edges on the basis of retaining regional 
information by comprehensively considering the 
spatial information of the image within the filter 

and the similarity of pixel gray values，some of the 

detail processing results are shown in Figure 2. 

 
Figure 2. The result of adding bilateral filters for indoor scenes. 

B. Model Introduction 

3DGS modeling is an innovative scene 
reconstruction and rendering technique based on 
Gaussian distribution. Its core idea is to use 3D 
Gaussian distribution as the basic element to 
represent the geometric and color information in the 
scene, and to render this information onto a 2D 
plane by rasterization showing unique advantages 
in many application scenarios. It mainly includes 
the following steps: 

1) Creating Gaussian Functions 

A 3D Gaussian was chosen for this experiment, 
which can be easily projected into a 2D image, thus 
allowing for fast blending rendering. Starting with 
a set of sparse point clouds, each feature point is 
represented in 3D space by a Gaussian function. 
The Gaussian function is defined by several 
parameters, including position, covariance matrix, 
color, and transparency. Our Gaussian is defined by 
the full 3D covariance matrix Σ defined in the world 
space, centered at the mean point: 
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At the same time, an affine transformation is 
needed to project the 3D Gaussian to 2D for 
rendering, letting the covariance matrix in the 
camera coordinate system be Σ. Given a scaling 
matrix 𝑆 and a rotation matrix 𝑅, we can find the 
corresponding Σ: 


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2) Adaptive density control 

Starting from the initial sparse point of the SfM, 
the initially sparse set of Gaussians is changed into 
a denser set of Gaussians by controlling the number 
and density of Gaussians per unit volume to better 
represent the scene. Gaussian densification is 
performed every 100 iterations and removes 
essentially transparent Gaussians, i.e., Gaussians 
with α less than a threshold. Our adaptive control 
part of the Gaussian needs to be corrected by 
moving the Gaussian for regions with missing 
geometric features and regions where the Gaussian 
covers a large area of the scene. For small Gaussian 
areas with missing geometric features, they need to 
be covered. For large Gaussians that are large for 
the Gaussian coverage of the scene need to be split 
into smaller Gaussians, using two new Gaussians to 
replace these Gaussians. In the first case, the need 
to increase the total volume and the number of 
Gaussians is detected and handled, and in the 
second case, the larger Gaussians are split into 
multiple smaller Gaussians. 

3) Rasterization 

The screen is first partitioned into 16*16 blocks 
and the Gaussians with 99% confidence intervals 
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that intersect the view vertebrae are retained. At the 
same time, each Gaussian is instantiated according 
to the number of tiles they cover, and then each 
instance is assigned a key that combines the depth 
of the view space and the tile ID. The Gaussians are 
then sorted based on those keys. 

After sorting the Gaussian, the entries are sorted 
by recognising the first and last depth of the splat to 
which they were sputtered, and a list is generated 
for each tile. Rasterisation is then performed, and 
for each tile a thread block is started, each of which 
loads the packet containing the Gaussian into 
shared memory and traverses the list from front to 
back through the colour and opacity values based 
on the given pixels, thus simultaneously loading 
and processing the data. When we reach the target 
saturation level during the accumulation of pixels 
in the continuous traversal, the corresponding 
thread stops, and the processing of the whole tile 
terminates when the opacity of all pixels is 1. 

C. Extracting 3DGS Model Optimization 

Since the SfM point cloud data generated by 
colmap increases to millions when the dataset is 
large, these data take relatively long time in scene 
training, which affects the efficiency of 3DGS 
splatting. In this experiment, a pruning operation on 
the Gaussian volume is added in the middle, with 
the main purpose of removing the high-density and 
high-volume regions in the scene due to false 
positives or redundancy, in order to improve the 
rendering quality and reduce the amount of 
computation. The specific flow of this experiment 
is shown in Fig. 3. 
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Figure 3. Optimized 3D Reconstruction Process Map. 

First, a series of 3D Gaussian bodies are defined 
within the view body, which are rendered by 

projecting them to the camera viewpoint so that 
their impact can be observed in the 2D image plane. 
For each Gaussian body, we calculate its 
contribution to each pixel or ray. This is done by 
determining whether the Gaussian body intersects a 
light ray. Iterating over all the pixels in the training 
view, the number of ‘hits’ on a pixel is calculated 
for each Gaussian as an initial significance score. In 
addition to the basic number of ‘hits’ on a pixel, we 
also consider the volume and opacity of the 
Gaussian to further refine the score. So the 
summary is as follows: 


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Where j is the Gaussian index, i is the pixel, and 
M, H, and W are the number of training views, 
image height, and image width, respectively. l is the 
indicator function, which determines whether or not 
the Gaussian function intersects a given ray. 
However, the use of Gaussian volume tends to 
exaggerate the importance of the background 
Gaussian distribution, leading to excessive pruning 
of the Gaussian distribution for complex geometric 
models. Therefore, we introduce a more adaptive 
method to measure the size of its volume. 
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The range of Gaussian volumes was limited to 0 
to 1 by sorting all Gaussian volumes and 
normalizing the top 90% of maximum values in the 
Gaussian volume as a benchmark, thus avoiding 
overly high or underly high floating-point Gaussian 
values obtained directly from the original 3DGS. 

IV. EXPERIMENTAL ANALYSIS 

In this paper, we firstly reconstructed the indoor 
scene using the base 3DGS model, and partially 
optimised the base 3DGS model, and evaluated the 
reconstruction quality of this paper's model in the 
Replica dataset and the self-picked data scene, and 
quantitatively analysed the reconstruction results 
by two metrics: PSNR and SSIM. 
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This paper first uses the original model to 
reconstruct indoor scene scenes for the Replica 
dataset, which is rich in scene details with dense 
meshes, high dynamic range textures, semantic 
layers, and reflective properties, and record the 
training results, and then we use the optimized 
model in this paper to reconstruct each scene in this 
dataset and record the results to compare with the 
former results. 

The results of comparing the peak signal-to-
noise ratio and structural similarity obtained by 
training the Replica dataset after optimizing the 
opacity of the original 3DGS model are shown in 
Table I. 

TABLE I. Experimental Results 

Dataset 

PSNR SSIM 

3DGS ours 3DGS ours 

office0 38.45 39.05 0.925 0.934 

office1 36.97 37.17 0.938 0.954 

office2 36.39 36.68 0.945 0.962 

office3 35.85 36.35 0.941 0.958 

office4 36.54 36.66 0.939 0.941 

room0 37.26 38.06 0.915 0.923 

room1 36.28 37.75 0.929 0.935 

room2 34.98 35.14 0.913 0.927 

By reconstructing the Replica dataset with 
diversity, we observe that the optimised method 
performs well on image quality assessment metrics. 
Both the Peak Signal-to-Noise Ratio (PSNR) and 
the Structural Similarity Index (SSIM) show 
significant performance improvement in all test 
scenarios. This consistent improvement not only 
reflects the robustness of the optimised algorithm in 
dealing with different types of indoor environments, 
but also indicates its good adaptability in scene 
reconstruction. 

The peak signal-to-noise ratio results obtained 
by training the Replica dataset after optimizing the 
opacity of the original 3DGS model are shown in 
Fig. 4. 

 
Figure 4. Performance of peak signal-to-noise ratios of 3DGS and ours 

models for eight different indoor scenes, respectively. 

The structural similarity ratio results obtained by 
optimizing the opacity of the original 3DGS model 
after training on the Replica dataset are shown in 
Fig. 5. 

 
Figure 5. Representation of structural similarity between 3DGS and ours 

model for 8 different indoor scenes, respectively. 

In multiple scenes of Replica dataset, the 
reconstruction results of the optimized 3DGS 
model show better results than the original 3DGS 
model in both PSNR and SSMI. With the increase 
of the number of Gaussian primitive, the PSNR 
value shows an obvious upward trend, which 
verifies the positive correlation between the model 
scale and the reconstruction quality. Meanwhile, 
the reconstruction results of the 3DGS model on the 
Replica dataset are not only highly similar to the 
real scene in terms of brightness and contrast, but 
also maintain good consistency in structural 
information. This indicates that the model is able to 
accurately capture the structural features of the 
scene, thus generating visually more realistic 
reconstruction results. 
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A. Indoor scene reconstruction on a self-built 

dataset 

In order to evaluate the applicability of the 
model in this paper more comprehensively, a series 
of own environmental data were also collected in 
this study. It is used to verify the performance of the 
optimized 3DGS model in the paper in real 
scenarios and to compare the results, as shown in 
the following table Ⅱ. 

TABLE II.  Experimental Results 

Dataset PSNR SSIM 

3DGS 30.41 0.879 

ours 31.89 0.897 

In the self-collected data scenes, the optimized 
3DGS model also shows superior reconstruction 
quality to the original 3DGS model. Especially in 
the area with complex light and rich texture, the 
model can better restore the scene details, and the 
PSNR value is kept at a high level. the SSIM value 
is also kept at a high level, which better adapts to 
the scene changes and maintains the structural 
similarity of the reconstruction results. 

Through this experiment, we verified the 
excellent reconstruction performance of the model 
in the Replica dataset and self-collected data scenes, 
and both PSNR and SSIM metrics show that the 
model can efficiently and accurately reconstruct the 
3D scene and retain rich structural information and 
visual details. In the future, we can further optimize 
the model structure and training algorithm to 
improve its reconstruction efficiency and quality in 
large-scale and complex scenes. 

V. CONCLUSIONS 

In order to solve the traditional neural radiation 
field for indoor scene reconstruction problem, and 

through the literature research is the scene of the 
method, the final choice of 3DGS model, selected 
Replica dataset and self-collected data scene 
reconstruction quality In the future, we can further 
optimise the model structure and training 
algorithms, in order to improve its reconstruction in 
large-scale, complex scenes in the efficiency and 
quality, for virtual reality, game development, film 
production and other fields to provide more 
possibilities. 

 

REFERENCES 

 
[1] Chen C , Fragonara L Z , Tsourdos A .GAPointNet: Gra

ph Attention based Point Neural Network for Exploiting
 Local Feature of Point Cloud[J].Neurocomputing, 2021,
 438(7553). 

[2] Mildenhall B , Srinivasan P P , Tancik M ,et al.NeRF: 
Representing Scenes as Neural Radiance Fields for View 
Synthesis[C]//2020. 

[3] Pumarola A, Corona E, Pons-Moll G and Moreno-
Noguer F. D-NeRF: Neural Radiance Fields for 
Dynamic Scenes ［ C］ . IEEE/CVF Conferenceon 
Computer Vision  and Pattern Recognition (CVPR), 
2021:10313-10322. 

[4] Li Z, Niklaus S, Snavely N and Wang O. Neural Scene 
Flow Fields for Space-Time View Synthesis of Dynamic 
Scenes［C］ . IEEE/CVF Conference on Computer 
Vision andPattern Recognition (CVPR), 2021:6494-
6504. 

[5] Srinivasan P, Deng B, Zhang X, Tancik M, Mildenhall 
B and Barron J. NeRV: Neural  Reflectance and 
Visibility Fields for Relighting and View Synthesis
［C］. IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), 2021:7491-750. 

[6] Niemeyer M and Geiger A. GIRAFFE: Representing 
Scenes as Compositional Generative Neural Feature 
Fields ［C］ . IEEE/CVF Conference on Computer 
Vision and Pat‐ tern Recognition (CVPR), 2021:11448-
11459. 

[7] Niemeyer M and Geiger A. GIRAFFE: Representing 
Scenes as Compositional Generative Neural Feature 
Fields ［C］ . IEEE/CVF Conference on Computer 
Vision and Pat‐ tern Recognition (CVPR), 2021:11448-
11459. 

 


