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Abstract—Generative Adversarial Network based image 

inpainting algorithms often make errors when filling 

arbitrary masked areas because all input pixels are 

treated as effective pixels during convolutional 

operations. To resolve this matter, we present a novel 

solution: an image inpainting algorithm that utilizes 

gated convolutions within the residual blocks of the 

network. By incorporating gated convolutions instead of 

traditional convolutions, our algorithm effectively learns 

and captures the relationship between the known 

regions and the masked regions. The algorithm utilizes a 

two-stage generative adversarial restoration network, 

where the structure and texture restoration are 

performed sequentially. Specifically, the structural 

information of the known region in the damaged image 

is detected using an edge detection algorithm. 

Subsequently, the edges of the masked area are 

combined with the color and texture information of the 

known region for structure restoration. Finally, the 

complete structure and the image to be restored are fed 

into the texture restoration network for texture 

restoration, yielding the complete image output. During 

network training, a spectral normalization Markovian 

discriminator is employed to address the slow weight 

changes during iteration, thereby increasing 

convergence speed and model accuracy. Based on the 

Places2 dataset, our experimental findings indicate that 

our algorithm surpasses existing two-stage restoration 

algorithms in terms of improving peak signal-to-noise 

ratio and structural similarity. Specifically, our 

proposed algorithm achieves a 4.3% enhancement in 

peak signal-to-noise ratio and a 3.7% improvement in 

structural similarity when restoring images with various 

shapes and sizes of damaged areas. Additionally, it 

produces noticeable visual enhancements, further 

validating its effectiveness. 
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I. INTRODUCTION 

Image inpainting involves the restoration of 
pixels within a damaged region of an image, 
aiming to achieve maximum consistency with the 
original image [1]. It provides various methods 
and approaches to tackle challenges such as the 
loss of semantic details, object occlusions, and 
image content degradation. 

During the evolution of image inpainting 
techniques, traditional machine learning 
algorithms and deep neural networks have been 
successively employed and achieved significant 
progress. With the advancement of deep learning 
technology, an increasing number of researchers 
have dedicated efforts to integrating it into the 
field of image inpainting [2], achieving notable 
successes. Pathak designed and applied generative 
adversarial networks on top of traditional 
convolutional neural networks, proposing 
encoder-decoder networks [3] and sending 
network outputs to a discriminator to detect 
authenticity, significantly enhancing the rationality 
of results. Nevertheless, the applicability of this 
network is limited to scenarios involving fixed and 
regular-shaped masked regions. when confronted 
with freely-shaped masks, the restoration 
outcomes may lack the desired level of naturalness. 
Liu proposed partial convolution to handle 
irregular holes for image inpainting, masking out 
ineffective inputs in convolutions and 
re-normalizing, convolving only with valid pixels, 
and achieving good restoration results by 
combining their proposed mask update mechanism. 
However, as the number of network layer 
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increases, it is difficult to learn the relationship 
between the mask and the image, resulting in mask 
boundary residues in the restored image. To 
address these issues, Nazeri proposed a two-stage 
generative adversarial network image inpainting 
method that combines edge information priors to 
accurately reconstruct high-frequency information 
in images. This approach comprises two key 
components: an edge restoration network and a 
texture restoration network. The former predicts 
the edges within the masked areas of an image, 
serving as guidance for the latter network, which 
then proceeds to fill these regions with appropriate 
textures. 

This paper proposes a structure-guided 
generative adversarial network-based image 
inpainting algorithm with gated convolution [4] 
for irregular masked region restoration tasks. The 
gated convolution facilitates a dynamic feature 
selection mechanism for the network, adapting to 
each channel and spatial position. This capability 
enables the network to choose feature maps in 
accordance with the semantic segmentation 
outcomes of particular channels. At the deep layer 
of the network, gated convolution can also 
highlight representations of the masking area for 
different channels. In addition, to ensure stable 
training, this algorithm employs spectral 
normalization Markovian discriminators for 
network generator outputs, providing better 
restoration results. 

II. RELATED WORK 

The network structure used in this paper is a 
two-stage generative adversarial restoration 
network [5], which combines structural and 
textural restoration to solve image inpainting tasks. 
This network divides the restoration process into 
multiple steps. Firstly, the structural information 
of the known area in the damaged image is 
obtained through an edge detection algorithm [6]. 
Then, the boundary of the occluded region is 
integrated with the color and texture attributes of 
the known region, culminating in the attainment of 
structural recuperation. Finally, the complete 
structure and the image to be restored are inputted 
into the textural restoration network for textural 
restoration, resulting in a complete image. The 
network leverages prior knowledge of image 

structures to enhance the rationality of the 
restoration results. 

The generator structure in this network consists 
of two types of convolution: ordinary convolution 
and dilated convolution combined with residual 
blocks, designed to broaden the receptive field of 
convolution. Despite the fact that dilated 
convolution possesses the capability to augment 
the receptive field without necessitating an 
increase in the parameter count, it is prone to 
losing detailed information when facing small 
masked areas, resulting in suboptimal performance 
of the generative adversarial network. To tackle 
this problem, the paper utilizes gated convolution 
in place of dilated convolution. This method 
allows for automatic learning of the mask, 
enabling the model to capture the connection 
between the mask and image channels while 
dynamically adjusting the convolutional receptive 
field, ultimately enhancing the coherence of the 
restoration outcomes. 

III. NETWORK MODEL STRUCTURE 

The image inpainting network decomposes the 
restoration task into completion of high-frequency 
information (edges) and low-frequency 
information (textures) in the masked area, 
completing the restoration process in three steps: 

Edge detection, which entails the utilization of 
a comprehensive nested edge detection algorithm 
to discern the impaired edges within the image. 
First, the RGB input image     with defects is 
converted to a grayscale image       with one 

channel, and then the HED detection algorithm is 
used to extract the structural information of the 
image to obtain the edge structure image     
with defects. 

Structural restoration, which inputs the detected 
damaged edge image, mask, and damaged image 
into the structure restoration network. The network 
includes a generator G1 and a discriminator D1, 
which outputs the complete edge when the 
discriminator detects that the generated edge is 
true. The gray-scale image       containing 

defects, the edge image    , and the binary mask 
image   (with pixel values of 1 for the masked 
area and 0 for the effective area) are concatenated 



International Journal of Advanced Network, Monitoring and Controls         Volume 09, No.04, 2024 

3 

along the channel dimension to obtain       , as 

shown in Equation (1).        serves as the joint 

input of the structure generator     .  

  d, ,input gray eE I E M  

As shown in Equation (2), after adversarial 
training with the edge discriminator     , the 

edge generator outputs the complete edge 
information     of the image.  

  co edg inputE G E  

Texture restoration, which inputs the complete 
edge and the damaged image to the texture 
restoration network. The network includes 
generators G2 and discriminators D2, which 
output the repaired complete image when the 
discriminator detects that the filled texture 
generated by the generator is true. As shown in 

Equation (3),  ̃   represents the complete 
structural image inputted into the texture detail 
generation network. The structural information of 

the damaged area in  ̃   is the structural 
generation result of the first stage, and the 
effective area retains the structural information of 
the original image. The input of the texture detail 
generator     is composed of the damaged image 
and the edge structure image, denoted as       .  

   d1co co eE E M M E    

  ,input co inI E I  

The network of the algorithm, as shown in 
Figure 1, it includes two parts with the same 
structure: a structure restoration network and a 
texture restoration network. Each part is a 
generative adversarial network consisting of a 
generator with 14 convolutional layers, a 
discriminator with 6 convolutional layers. 

 
Figure 1. Overall structure of the image inpainting network 

A. Generator Network Architecture 

The role of the generator is to generate 
fictitious samples similar to real samples based on 
real samples, and by continuously improving the 
reality of generated samples, the discriminator 
network cannot tell whether an input is a real 
sample or a fictitious sample. The generators G1 
and G2 in the edge restoration network and texture 
restoration network have the same structure and 
use gated convolution as the core component of 
the generator. Specifically, the generator adopts 
the following structure: the first layer is a 
normalization layer with 64 convolution kernels of 
size 7×7 to avoid gradient explosion or 
disappearance during backpropagation; the second 
and third layers are downsampling layers that use 
128 and 256 convolution kernels of size 4×4 
respectively to continuously reduce the image 
resolution and increase the output receptive field; 
the fourth to eleventh layers consist of 8 residual 
blocks, all using 3×3 gated convolution kernels 
that do not change the image size, and use masked 
feature filling with gated convolution to reduce 
gradient disappearance caused by background 
feature; the twelfth and thirteenth layers are 
upsampling layers with a size of 4×4, gradually 
restoring the image to its original resolution;  The 
fourteenth layer consists of an activation function 
applied after a 7×7 convolutional kernel, designed 
to mitigate the impact of nonlinearity. Instance 
normalization is used between each convolutional 
layer to make each generated sample independent 
of each other [7]. 

B. SN-PatchGAN 

In order to ascertain the veracity of input data, 
the discriminator is frequently employed to 
discriminate between actual samples and synthetic 
samples produced by the generator. Both D1 and 
D2 use Spectral Normalization PatchGAN as the 
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discriminator to determine the authenticity of the 
generator's restoration results. The training process 
consists of two steps. First, train the discriminator 
with a fixed generator. When the input is real data, 
the confidence is set to 1; otherwise, it is set to 0. 
While keeping the generator parameters 
unchanged, maximize the generator loss function 
value to enable the discriminator to have the 
ability to distinguish between real and fictitious 
data. Second, train the generator with a fixed 
discriminator. While keeping the discriminator 
parameters constant, minimize the generator loss 
function value so that the generator can generate 
images that the discriminator cannot distinguish 
which one is real. Through the repeated iteration 
of this minimax game process, the model 
ultimately achieves a state of equilibrium, thereby 
stabilizing the training. 

The structure of the Spectral Normalization 
Markovian Discriminator is as follows: 6 
convolution layers with a kernel size of 5 and a 
stride of 2, with 64, 128, 256, 256, 256, and 256 
convolution kernels, respectively. By stacking 
each layer to obtain statistical information of the 
Markovian block features, it captures different 
features of the input image in different positions 
and semantic channels, and directly applies the 
generative adversarial network loss to each feature 
element in the feature map. 

C. Gated Convolution  

The middle layers of the generator network are 
used to generate features of damaged regions, so 
continuous residual blocks are needed to maintain 
gradients during propagation in order to prevent 
gradient disappearance or explosion. However, 
conventional residual blocks typically use dilated 
convolutions, which sacrifice many details 
associated with known and unknown regions 
despite obtaining a larger receptive field.  

Gated convolution offers a trainable 
mechanism for dynamically selecting features at 
each spatial position and channel across all layers, 
thereby enabling the generalization of partial 
convolution, thus avoiding the problem of low 
edge information utilization and lack of relative 
position information in deep layers caused by 
partial convolution. Even after multiple rounds of 

feature extraction and mask updating, the network 
can still assign different soft mask values to each 
spatial location based on edge sketch information 
and whether the current pixel is located in the 
masked area of the feature image. The structure of 
gated convolution is shown in Figure 2. 

 
Figure 2. Schematic diagram of gated convolution structure 

The gated convolution      consists of the 

gating selection unit      and the feature 

extraction unit     , as shown in Equations (5)-(7), 

where     represents the downsampled feature 

map input in the network. 

 , my x g fG W I    

 , my x m fF W I    

    , , ,y x y x y xO F G   

Specifically, the network first calculates the 
gate value   of the input feature map according 

to the formula     (    ).   is the sigmoid 

activation function, which outputs gate values 
between 0 and 1.    is a learnable parameter that 

serves as a convolution filter used to compute gate 
values, while    is a multi-dilated convolution 
kernel used for feature extraction from the input 
image.   is the LeakyReLU activation function. 
The gated convolution structure finally outputs the 
product of the feature map      and the gate value. 

Gated convolution enhances the generator's ability 
to utilize valid elements and edge pixels in the 
input image, thereby improving its reasoning and 
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synthesis capabilities for missing regions in 
images. 

D. Loss Function  

Structural repair network loss function, To 
ensure stable and effective training, the loss 
function of the generative adversarial network in 
the structure repair network uses the hinge loss to 
determine the truth or falsehood of the input, 
including the generator loss    and the spectral 
normalized SN-PatchGAN discriminator loss 
    : 

     sn

G z PzL E D G z
    z  


    

     
data

1
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L E ReLU D
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


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 
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 

x P

z P

x

z
 

Here,  ( ) is the output result of the generator 
G1 repairing incomplete image  , and     
represents the spectral normalized Markov 
discriminator. 

Given that the relevant edge patch information 
in the image has already been captured in    , the 
use of perceptual loss becomes unnecessary. 
Instead, a stringent L1 loss function with a 
substantial penalty is sufficient. Consequently, the 
final loss function for the structure repair network 
is composed solely of two components: the 
pixel-level L1 reconstruction loss      and the 
loss from the spectral normalized Markov 
discriminator     , which are set with a default 
hyperparameter ratio of 1:1, as shown below: 

 snrec D
L L L   

       F 1 MrecL x M x x    

Here,  ( ) represents the sampling process of 
the encoder. 

Texture repair network loss function, In the 
texture restoration stage, a large amount of texture 
information is filled, causing significant 
differences in the activation maps of each 
convolutional layer. To capture the difference in 

covariance between these activation maps, a style 
loss is introduced. Given a feature map of size 
        , the expression for the style loss 
function is: 

    style i i out i inL E G C G I      

Here,   
 

is the        Gram matrix 

constructed from the   layer activation map   . 
The ultimate loss function for the texture 
restoration network incorporates both the style loss 
and the SN-PatchGAN loss, configured with a 
default hyperparameter ratio of 1:1, as detailed 
below: 

 snstyle D
L L L   

The expression for      is the same as 
Equation (9). 

IV. EXPERIMENTS 

A． Experimental Environment 

In the experiments, the batch size was set to 8, 
and both the discriminator and generator learning 
rates were 1e⁻⁴, with the Adam optimizer 
(parameters: β₁=0, β₂=0.9) used for network 
updates. The experimental environment was based 
on an Ubuntu system with the PyTorch 1.8.3 deep 
learning framework, and the hardware 
configuration included a CPU with 128GB of 
memory and 4 NVIDIA TITAN V GPUs, each 
with 12GB of VRAM. The proposed 
improvements were thoroughly tested under the 
same configuration. 

 
Figure 3. Curves of Loss Functions during Model Training 
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Figure 3 shows the convergence curves of the 
loss functions during the training process. As the 
number of iterations increases, the loss functions 
of both the generator and discriminator gradually 
stabilize and eventually converge, completing the 
training. Throughout the training process, the loss 
functions of the generator and discriminator are 
updated alternately, gradually improving the 
quality of the generated images and enhancing the 
discriminator’s ability to distinguish them. Proper 
selection of the combination and weights of the 
loss functions is crucial for training a high-quality 
GAN model. 

B． DataSet 

The experimental datasets utilized in this study 
include the Places2 and CelebA datasets. The 
Places2 dataset [10] contains approximately 10 
million images, and is widely used for image 
processing tasks related to scenes and 
environments. The experiments were conducted 
using the official default training and testing sets. 
A partial sample of the Places2 dataset is shown in 
Figure 4. The CelebA dataset, which was publicly 
released in 2015 by the Chinese University of 
Hong Kong, is an extensive collection of face 
attribute data on a large scale. This dataset 
comprises roughly 202,599 facial images, each 
accompanied by 40 attribute annotations. A partial 
sample of the Places2 dataset is shown in Figure 5. 

The mask dataset used in this study was 
contributed by the dataset proposed in [2], which 
contains 12,000 masked images with mask region 
ratios ranging from 1% to 90%. During training, 
the masks were randomly rotated by 0°, 90°, 180°, 
and 270°, and horizontally and vertically flipped 
for data augmentation. To verify and optimize the 
feature extraction and gating selection capabilities 
of the gating convolutional layer for different 
masks, each original image was trained by 
arbitrarily and repeatedly superimposing random 
masked areas before being input into the network. 
A partial sample of the mask dataset is shown in 
Figure 6. 

 
Figure 4. A partial sample of the Places2 dataset 

 
Figure 5. A partial sample of the CelebA dataset 

 
Figure 6. A partial sample of the Irregular mask dataset 

C． Evaluation index 

In order to assess the quality of the restoration 
results, we employed the peak signal-to-noise ratio 
(PSNR) and structural similarity (SSIM) metrics, 
as specified in reference [8]. These metrics were 
employed to calculate the average PSNR and 
SSIM values for the restored images, where higher 
scores indicate superior restoration quality. PSNR 
(peak signal-to-noise ratio) is originally defined as 
the ratio between the maximum potential signal 
power and the noise power that impacts its 
precision. In image processing, PSNR is 
frequently employed to assess image quality in 
inpainting tasks. A higher PSNR value signifies 
less distortion in the compressed image. The 
corresponding calculation formula is presented 
below: 


IMAX

20
MSE

PSNR lg
 

   
 

 

In this context,      denotes the maximum 
pixel value in the image, while MSE represents the 
mean squared error between the generated image 
and the original (noisy) image.  

The structural similarity index (SSIM) 
measures the structural resemblance between an 
uncompressed, undistorted image and a target 
image. It assesses similarity across three aspects: 
luminance, contrast, and structure [9]. Luminance 
is calculated through the mean value, contrast 
through the standard deviation, and structural 
similarity through covariance. A higher SSIM 
score signifies greater similarity and less distortion, 
with a maximum value of 1. The formula for its 
calculation is shown below: 
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
  

  
1 2

2 2 2 2

1 2

2 2X Y XY

X Y X Y

C C
SSIM

C C

  

   

 


   
 

Here,    represents the mean pixel value of  , 
while    represents the mean pixel value of  , 
and the mean value is an estimate of the luminance 

of the images.   
  and  

 represent the variances 
of and , respectively, and the standard deviation 
is an estimate of the contrast of the images.     
represents the covariance between   and  , and 
it is used as a measure of the structural similarity 
between the images, with a range from 0 to 1.    
and    are constants introduced to ensure 
stability. 

D． Comparative Analysis of Results 

In order to verify the effectiveness of the 
algorithm, the test sets of Places2 and CelebA 
datasets were used to compare the algorithm with 
CE, Pconv and EdgeConnect algorithms in terms 
of subjective results and objective evaluation 
indicators under different mask region proportions. 

 

 
Figure 7. The repair effect of each algorithm is displayed 

Figure 7 shows the repair results of our method 
and the comparison methods in each data set. In 
the first column of the figure, the input image with 
random mask is added. In the second column to 
the fifth column, the repair results of CE, Pconv, 
EC and the algorithm in this paper are respectively 
applied. The sixth column is the original image. 

TABLE I.  PSNR/SSIM FOR DIFFERENT IMAGE INPAINTING METHODS 

AND DIFFERENT MASK AREA RATIOS ON THE PLACES2 DATASET 

Mask 
Ratio 

PSNR/SSIM 

CE Pconv EC 
Ours 

1%-10% 29.26/0.937 30.87/0.929 32.58/0.947 
33.89/0.961 

10%-20% 21.34/0.746 24.62/0.887 27.15/0.916 28.43/0.935 

20%-30% 19.58/0.658 21.43/0.824 24.33/0.859 25.58/0.878 

30%-40% 17.82/0.549 19.32/0.751 23.17/0.782 23.81/0.814 

40%-50% 15.77/0.475 17.48/0.682 21.64/0.747 22.04/0.763 

50%-60% 14.25/0.416 16.44/0.613 19.46/0.651 
20.53/0.686 

 

According to the table 1, when the mask area 
ratio is between 1% and 30%, the peak 
signal-to-noise ratio of our algorithm ha0073 a 
significant improvement compared to other 
algorithms, with an average improvement of about 
4.3% compared to the EdgeConnect network. This 
is because the network uses gate convolution 
technology to obtain the relationship between the 
background and the mask, thereby enhancing the 
consistency and rationality between the known 
region and the filling region. It also confirms that 
the two-stage network model has excellent 
restoration performance. As the mask area ratio 
gradually increases, the PSNR of all algorithms 
shows a significant decrease. Nonetheless, the 
superior performance indicates that the Spectral 
Normalization Markov Discriminator significantly 
enhances the network's robustness. When the mask 
area ratio is between 30% and 60%, the structural 
rationality of the CE method's restoration effect is 
poor, and the curve of structural similarity 
decreases faster. This is because the 
encoder-decoder network [10] of this method is 
only suitable for repairing tasks where the mask 
area is square. Nevertheless, the structural 
similarity of our proposed algorithm is slightly 
higher than that of the EdgeConnect method, 
because the hinge loss function adds a 
reconstruction loss in the edge recovery process, 
which constrains the network to generate more 
complete structural information. This prior 
information can achieve higher structural 
similarity results after entering the texture 
restoration network. 



International Journal of Advanced Network, Monitoring and Controls         Volume 09, No.04, 2024 

8 

 
Figure 8. Comparison of Inpainting Results at Different Iterations 

during Training 

Figure 8 shows the comparison of intermediate 
results generated at different iterations during the 
deep learning-based image inpainting task. The 
proposed model demonstrates significantly 
superior performance compared to other models 
throughout the training process. In the early stages 
of training, the generated images exhibit low 
quality and noticeable blurriness. As the number 
of iterations increases, the inpainting performance 
gradually improves, though certain deficiencies 
remain. During the middle stages, while the 
overall quality of the restored images improves, 
localized texture blurring is still apparent. In the 
later stages of training, despite enhanced overall 
image quality, texture artifacts and unclear 
boundary restorations persist. After further 
iterations, the model achieves a notable 
improvement in image restoration quality. 

Ultimately, the proposed model progressively 
refines texture details throughout the training 
process, resulting in final images with sharper 
visual quality and higher restoration fidelity. 

V. CONCLUSIONS 

To sum up, the present study introduces a novel 
image restoration algorithm utilizing a gate 
convolution generative adversarial network. This 
approach effectively captures the intricate 
connections between the known and masked 
regions, enabling the acquisition of meaningful 

correlations between the image and the 
corresponding mask. This algorithm effectively 
improves the quality of image inpainting by 
solving problems such as unnatural holes and 
inconsistent filling regions, especially when the 
mask area ratio is less than 30%. Additionally, 
using Spectral Normalization Markov 
Discriminator and hinge loss function can enhance 
the reconstruction details and stabilize the network 
training process, thereby improving the speed and 
accuracy of the algorithm. Future research will 
focus on texture restoration and try to conduct 
experiments in content generation of generative 
adversarial networks to further improve the 
inpainting effect of the network when repairing 
images with more than 30% defects. 
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