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Abstract—For the provision of accurate link prediction, 

this study's neural network-based method for API 

recommendation uses structure encoding to capture 

topological context. SEGNN4SLP, a Graph Neural 

Network (GNN) framework that integrates node 

attributes and graph structure to enhance GNNs' link 

prediction skills, makes a substantial contribution. 

Utilizing an actual dataset with 21,900 APIs, 6,435 

Mashups, and 13, 340 interactions, 

ProgrammableWeb.com was the source of the evaluation. 

Eighty percent of the data were test sets and twenty 

percent were training sets after single API-invocation 

Mashups were eliminated. The results demonstrate high 

link prediction accuracy, which is attributed to the 

incorporation of structural encoding in embedding 

learning and improved collaborative signal extraction 

from users and APIs, which improves API 

recommendation performance overall.  

Keywords-Network Representation; Web Service; 

Mobile Network; Graph Attention network; Link 

Prediction 

I. INTRODUCTION 

The advancement of service computing 
technologies and the rise of service markets have 
resulted in the proliferation and consumption of an 
increasing variety of services (such as APIs and 
Mashups) in diverse application situations. [1]. 
Mashup represents a lightweight Web application 
that consists of multiple existing Web APIs or 

services in a flexible manner to meet the complex 
application needs of users. 

According to Programmable Web's statistics, 
there is a concentration of usage since the top 
10(200) most often used Web API calls in 
Mashups account for around 30.6% (99%) of all 
Mashup calls [2]. Consumers may ignore lesser-
known APIs because they frequently rely on these 
well-known ones [3]. By utilizing implicit co-call 
records between APIs in past Mashups, it is 
possible to forecast the likelihood of usage of less 
popular APIs, which helps to solve the problem of 
users missing out on potentially useful APIs for 
their Mashup requirements. 

 

Figure 1 Maup example schematic 

The service Link Prediction results can be used 
to diversify Web API recommendations [4]. With 
the use of service graph data [4], Graph Neural 
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Networks (GNNs) have emerged as a potent 
framework for service management applications. 
By using a message passing paradigm to 
recursively collect neighborhood vectors, they are 
very good at predicting service links [5]. 
Nevertheless, conventional GNNs merely convey 
node properties while passing messages; they do 
not explicitly take topological information into 
account, which has been shown to be 
advantageous in topology-based techniques.  

The design and encoding of structural elements 
and their integration into GNNs for service link 
prediction are the two primary difficulties that this 
work attempts to solve. A topology-based strategy 
provides a Path Labeling (PL) method to extract 
structural information in order to address the first 
difficulty. An encoder is then used to transform 
these features into structural embeddings. The 
Network Topology Structure Enhanced Graph 
Neural Network (SEGNN4SLP) incorporates 
configurational embeddings into GNNs to tackle 
the second challenge. To improve GNN speed, 
SEGNN4SLP maps structural embeddings to the 
same space as the original node features using a 
feature fusion module. By utilizing both structural 
and attribute information, SEG can optimize link 
prediction through the joint training of the 
structural encoder and GNN. The pipeline consists 
of labeling nodes according to their positional 
roles, creating structural embeddings, fusing them 
with GNNs, and extracting a closed 1-hop 
subgraph surrounding target nodes. This fusion 
forecasts the presence of linkages between target 
nodes when paired with the results of the GAT 
model. 

II. METHODOLOGY OF SEGNN4SLP 

This research presents the SEGNN4SLP 
framework, which includes node embedding and 
structure encoding, for service link prediction 
(Figure 2). A closed 1-hop subgraph is extracted 
around two target nodes in order to forecast 
linkages between them. To extract structural 
characteristics, each node is labeled according to 
its positional role in the subgraph; structural 
encoding is then used to construct structural 
embeddings. The GAT model receives these 
embeddings fused with node attributes as input. 

The presence of a link between nodes a and b is 
predicted by the correlation between the structural 
embeddings of the target nodes and the output of 
the GAT model. 

a b

a b

Extract enclosing 

subgraph of target node

a b

Path Labeling

GAT

Structure encoding a b

Structure embedding

Feature 

fusion

a b

Structure 

similarity

Semantic 

similarity

 

Figure 2 The SEGNN4SLP structure 

A. Structure Encoding 

Most GNN models primarily utilize edges for 
message delivery, overlooking network topology. 
Incorporating network topology as additional input 
can significantly enhance network embedding 
quality. This section discusses designing and 
encoding structural features. Various local patterns 
around target nodes exist. Assessing both node 
topology and connecting edges is essential for 
measuring node correlation. Graph structure 
methods, including Common Neighbors (CN), 
Jaccard, Adamic/Adar (AA), and Katz measures, 
aid in link forecast missions. These approaches 
can be unified below: 

 i, js(i, j) f ( , N(i), N( j)) (p )l

l 1

l 




  

where s(i, j) denotes the similarity between 

nodes iv  and jv ; i, jpl
denotes the number of nodes 

iv and jv at path length l; N(i), N( j) denotes the 

neighbors of nodes iv and jv . 

The pathways of target nodes and their 

surrounding nodes i, jpl
are two crucial elements 

N(i), N( j) in Equation 1. Although Graph Neural 

Networks (GNNs) already integrate information 
from neighboring nodes, routes provide further 
inputs to GNN models, highlighting their 
importance. The proposition characterizes the 
route between two target nodes as a specific form 
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of topological attribute, described in the following 
manner: 

Path Labeling: Where ijp denotes the path 

between the target node iv and jv . The path has no 

duplicate vertices and duplicate edges. To 
represent these paths as topologies available to the 
nodes, Path Labeling (PL) is proposed to label the 
nodes under each different path and assign values 
for example, the nodes of the target node 1 hop 
neighbors have the same Path Labeling. For nodes 
that appear in various routes in the meantime, the 
shortest route is chosen to label the nodes. 

a b

c

a

ed

b a

df e

b

g

0c 0c 0c 0c 0c
0c

1c 2c 2c 2c 2c4c 4c

 

Figure 3 The SEGNN4SLP framework demonstrates the use of route 

labeling (PL) on a 1-hop subgraph that includes nodes a and b. In (a), we 
notice a route with a length of 2, in (b) a route with a length of 3, and in (c) 

a route with a length of 4. Every unique pathway is depicted using a 

distinct hue. The nodes are labeled and the labels are presented above the 
nodes. Nodes with different labels are shown in distinct colors. 

Figure 3 shows a schematic diagram of the path 
marking in a subgraph consisting of 1-hop 
neighbors of two target nodes. As in Figure 3(a), 

node c is a common neighbor of node a and node b, 
marked as; as in Figure 3(b), node a and node b 
are on the path of path length node 3 (a-d-e-b), 
marking nodes d and e as; as in Figure 3(c), nodes 
d and e are on the route of path length 3 (a-d-e-b) 
and length 4 (a-f-d-e-b), and the shorter route is 
selected to label nodes d and e, labeled as; nodes f 
and g are on the path of path length 4, labeled as. 

By labeling the nodes under different paths by 
PL, for these topological characteristics from the 
routes of every pair of target nodes, a structural 
encoding method is additionally proposed to learn 
the representation vectors from them. The 
definition of the encoding approach is shown 
below: 

In Algorithm 1, GCN layer and MLP are 

utilized to fit f and   in Equation 1. With proper 

coefficients and sufficient layers, it is hoped that 
the approximation error can be neglected. In 
addition, A constant is used λ  to truncate paths 
that are too long, and these differences prevent PL 
overfitting and make the model more robust. 

Algorithm 1 : structure encoding 

input: target nodes iv , jv ; enclosing subgraph sG  

output: node embedding z 

1   /*extracts the routes*/ 2   i, jp  ⬅(G,i,j) 

3   /* generate node structural features */ 4    u i. j S u Sc {p ,G }, G ;    

5  
( )

u u u SZ one hot(min(c ,λ)), G ;   0
 6   /* encode with a GCN layer and a MLP */ 

7      for Su G do 8  
( ) ( )

u v uZ AGGREGATE(Z , N(u));  1 0
 

9      end for 10    u u u sZ MLP(z ), G ;    

B. Node Embedding Representation 
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Figure 4 Assign different coefficients between nodes by GAT. 

The utilization of an undirected graph to 
describe a network consisting of online APIs and 
Mashups enables the application of graph neural 
network techniques for obtaining vector 
representations of nodes. One way to accomplish 
this is by using Graph Attention Networks (GAT) 
to assign different weight coefficients to nodes and 
combine the information from neighboring nodes, 
including the target node's own features, to update 
and obtain a new vector representation of the 
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target node. The influence between nodes i and j 
can be mathematically represented as: 

  e ,ij i ja Wh Wh  

where a denotes the attention parameter of node 

i on node j, W denotes the weight matrix, and ih , 

jh  denotes the vector representation of node i and j. 

Besides, the  impact of node i on node j is not 
equivalent to the impact of node j on node i , 

e eij ji . 

After obtaining the importance between pairs of 
nodes based on the same route, the softmax 
function is used for normalization. 


  

  

exp
a

e

eexp
i

ij

k N

ij

ik





 ∈

 

where  denotes the activation function, || 

denotes the splicing operation, a ij denotes the 

attention coefficients of the lower nodes i and j, 

and iN represents the set of neighbors of node i . 

The normalized coefficient is used to calculate 
the weighted mean of the transformed 
characteristics of neighbor nodes (nonlinear 
activation function is used) as the new feature 
vector representation of node i: 


i

i ij j

j N

h a Wh
 
 






∈

 

After obtaining the new vector representation 
of the node, the next consideration is how to fuse 
the node vector and the structure information. 

C. Feature Fusion 

An effective approach to acquire knowledge 
about both node properties and structural data is to 
directly feed them into Graph Neural Networks 
(GNNs) such as SEAL [6]. Nevertheless, these 
two categories of characteristics have varied 
meanings: node properties usually provide 

semantic data, while structural characteristics are 
directly obtained from the graph topology. Hence, 
acquiring proficiency in both semantic and 
structural knowledge presents a considerable 
obstacle. 

A framework called SEGNN4SLP has been 
developed to combine these two functionalities. 
Figure 6 depicts the intricate architecture. The 
SEGNN4SLP architecture consists of two 
components: a structural encoder and a deep 
Graph Neural Network (GNN). In the structural 
encoder, the process begins with encoding the 

node structural features ( uc ) having a single layer 

of GCNs. The reason for using a single layer of 
Graph Convolutional Networks (GCNs) is that the 
multi-hop data is naturally present in the route. 
Therefore, a single layer of aggregation suffices to 
upgrade the two desired target nodes. The output 
of the GCN layer are adopted as the input of a 

MLP to fit f and   in Equation1. The output 

vectors are denoted uz of MLP as the 

configurational embeddings of vu . The structure 

similarity score structureS  is predicted with another 

MLP on basis of the Hadamard product of 

structural embeddings of target nodes iz  and jz . 

  structure i jS MLP z z  

 

Figure 5 Architecture of SEGNN4SLP 
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In the deep GNN model, the configurational 

embeddings uz and the original node properties 

ux are originally combined using a Multilayer 

Perceptron (MLP). The feature fusion module 
combines the features of x and z into a unified 
feature space. The deep GNN model can utilize the 
fused features as input to learn from both the 
structural characteristics and the original node 
characteristics. In this context, a Graph Attention 
Network (GAT) is selected as the primary Graph 
Neural Network (GNN) model, and the 
SortPooling [7] layer is utilized to obtain the 
ultimate representation output of the two specific 
nodes of interest. An MLP is used to forecast the 
high semantic similarity score, represented as 

semanticS . The structural similarity mark and the 

semantic similarity mark are subsequently merged 
to ascertain the ultimate probability of link 
presence: 

 structure semanticS S S   

For better learning of the model parameters, the 
SEGNN4SLP model uses cross entropy as the loss 
function, defined below: 

    
1

1
l log 1 log 1

N

t t t t

t

oss y s y s
N 

     

Where st denotes the fraction of possible links t; 

ty denotes the label of link t; N denotes the 

number of training edges. The function reacts 
similar embedding of friends and dissimilar 
embedding of enemies. The cross-entropy loss is 
reduced constantly to update the coefficients, and 
the vector representation Z of nodes is got when 
the loss tends to be stable after several 
optimizations, and the algorithm procedure is 
specified below. 

Stable after several optimizations, and the 
algorithm procedure is specified below. 

 

Algorithm 2 : SEGNN4SLP 

input: target edge (i,j); input graph G ; node characterizes X 

output: forecast score s, 

1   /* extracts enclosing subgraph */ 2   sG G  

3     s structural Encoding , , , ;u uz S G i j G    4      structure i jS MLP z z  

5   /* feature fusion */  , s s, , ;u i j uc p G G    

 
 

0
0

sx x , ;u u u G  

 0

sx x , ;u u uMLP G
 

   
 

 0

sh x , ;u u u G    

6  /* GNN message passing */for k=1,2…K do:  for u G  do: 
 k

h  4;u Equation endend 

7 
  k

sh h | , 1, , ;G uSortPool u G k K    8  hsemantic GS MLP  

9 structure semanticS S S   

 

III. EXPERIMENTS 

A. Dataset description 

This study's methodology was meticulously 
assessed through a series of controlled trials 

performed on Programmable Web (PW), the 
largest and most renowned public repository for 
web APIs. PW functions as an extensive platform 
that rigorously aggregates and methodically 
organizes a wide range of data related to web APIs 
and their corresponding applications. The study 
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concentrated on the methodical analysis of the web 
APIs and mashups present on PW, specifically 
highlighting the assessment of the interactions 
between these APIs and their users, referred to as 
mashups.  

The dataset employed for these assessments 
comprises a significant aggregation of 21, 900 
individual APIs, 6,435 unique mashups, and a 
comprehensive account of 13, 340 specific 
interactions between these mashups and APIs. 
Table 1 presents a detailed summary of the 
experimental dataset, encompassing essential 
measurements and properties vital to the 
evaluation process. To guarantee the robustness 
and validity of the evaluation, the study 
intentionally removed mashups comprising only a 
single API call from the dataset, thereby 
concentrating on more intricate and representative 
interactions.  

For the evaluation, the dataset was carefully 
divided into two separate subsets: 80% of the 
exchange records were allocated as the training set, 
employed to construct and enhance the models and 
methodologies under investigation. Twenty 
percent of the data was designated for the test set, 
acting as the essential benchmark for evaluating 
the performance and effectiveness of the trained 
models. This stratified method guaranteed a 
thorough and impartial examination, establishing a 
solid basis for analyzing the technique's relevance 
and efficacy in practical situations. 

B. Evaluation metrics 

User preferences can be output by every model 
for all APIs. To assess the effectiveness of Top-K 
recommendation and user preference ranking, two 
assessment metrics are employed. Recall@K 
represents the proportion of actual APIs in the top 
- K API recommendation list to the actual APIs 
required by user preferences. Its definition is 
shown below: 


   

 

| topk |
Re @

| |

actural APIs APIs
call k

actural APIs


  

nDCG@K gives varying weights to every API 
in the top - K recommendation list, with higher-

ranked APIs receiving bigger weights. One of its 
commonly adopted definitions is: 



 

 1 2

2 1
@k

log 1

rel in

i

DCG
i





  


 

c

1 2

1
@ k

log 1i

IDCG
i




  


@

@k
@

DCG k
nDCG

IDCG k
  

TABLE I COMPARISON OF DIFFERENT METHODS IN RECALL@K. 

 K=5 K=10 K=15 K=20 K=25 

Node2vec 0.2185 0.2915 0.3473 0.3761 0.4012 

GCN 0.2729 0.3461 0.3684 0.4561 0.4716 

GraphSAGE 0.2816 0.3553 0.3941 0.4611 0.4933 

GAT 0.2810 0.3513 0.3902 0.4687 0.4910 

SEAL 0.2984 0.3588 0.4013 0.4701 0.4987 

SEGNN4SLP 0.3514 0.3981 0.4586 0.4981 0.5231 

TABLE II COMPARISON OF DIFFERENT METHODS IN NDCG@K. 

 K=5 K=10 K=15 K=20 K=25 

Node2vec 0.2314 0.2786 0.3278 0.3529 0.3604 

GCN 0.2811 0.3378 0.3588 0.3687 0.3786 

GraphSAGE 0.2823 0.3468 0.3770 0.3819 0.3793 

GAT 0.2811 0.3398 0.3764 0.3987 0.3859 

SEAL 0.2994 0.3410 0.3896 0.4055 0.3986 

SEGNN4SLP 0.3516 0.3814 0.4156 0.4258 0.4288 

C. Baseline methods 

In order to verify the effectiveness of our 
proposed method, we choose the following 
method to compare with our proposed method: 

Node2vec is a traditional graph embedding 
technique that represents nodes as low-
dimensional vectors. Node2vec utilizes random 
walks to effectively capture both local and global 
structures inside a graph, rendering it a versatile 
instrument for many graph-related tasks. After 
embedding the nodes into low-dimensional vectors, 
a Multilayer Perceptron (MLP) predictor is 
subsequently employed. This predictor employs a 
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combination of the original node features and the 
Node2vec output vector as input, thereby 
incorporating both structural information and 
intrinsic node qualities to improve predictive 
performance. The MLP adeptly models intricate, 
nonlinear relationships, efficiently utilizing this 
enhanced feature set to generate precise 
predictions. 

Conversely, Graph Convolutional Networks 
(GCNs) are prominent neural networks that 
characterize graphical convolution via spectrum 
analysis. Graph Convolutional Networks (GCNs) 
function by altering and disseminating node 
attributes via the graph's Laplacian matrix, thereby 
encapsulating the spectral characteristics of the 
graph. This methodology enables GCNs to 
intrinsically comprehend and leverage the graph's 
topology, rendering them exceptionally proficient 
for jobs like node classification and graph 
categorization. 

GraphSAGE, a prevalent graph neural network, 
presents an innovative methodology by utilizing 
sampling and aggregation techniques to facilitate 
inductive learning for previously unobserved 
nodes. In contrast to transductive approaches that 
necessitate the complete graph during training, 
GraphSAGE generalizes by acquiring the ability to 
aggregate feature information from local 
neighborhoods. The inductive feature of 
GraphSAGE enables it to manage graphs with 
changing structures, rendering it especially 
advantageous in dynamic situations when the 
graph is not entirely known in advance. 

SEAL (Subgraph Embedding Attributed Link 
prediction) is a link prediction technique that 
derives link representations from tagged subgraphs 
using the Deep Graph Convolutional Neural 
Network (DGCNN). SEAL functions by extracting 
subgraphs surrounding prospective edges and 
subsequently employing DGCNN to derive 
embeddings that include the structural and 
semantic attributes of these subgraphs. This 
acquired knowledge is then utilized to forecast the 
probability of connections, offering a solid and 
comprehensible method for link prediction. 

Graph Attention Networks (GAT) incorporate 
attention mechanisms into graph neural networks 

based on spatial domains. GATs dynamically 
allocate varying weights to adjacent nodes 
according on their significance to the center node, 
thus enhancing node attributes through the 
weighted representation of neighboring nodes. 
This attention-based methodology enables Graph 
Attention Networks (GATs) to concentrate on the 
most significant relationships within the graph, 
hence improving its efficacy in capturing intricate 
dependencies and interactions among nodes. 

In conclusion, these methods exemplify a range 
of strategies for utilizing graph structures in 
diverse machine learning applications. Node2vec, 
GraphSAGE, and GAT each provide distinct 
advantages that render them appropriate for certain 
applications and contexts. Collectively, they 
constitute a comprehensive toolkit for tackling 
various graph-related issues. 

D. Experimental results 

The efficacy of the proposed strategy will be 
thoroughly assessed in comparison to the 
previously mentioned baseline approach. The 
findings in Table 1 unequivocally demonstrate that 
the suggested method regularly surpasses the 
baseline in all cases. The technique exhibits a 
about 13% improvement over the ideal baseline 
when assessed using Recall@K. This substantial 
enhancement is especially remarkable considering 
that, in fact, users generally need less than 5 APIs 
to create a Mashup. Thus, the marginal advantages 
of recall tend to decrease as the quantity of 
suggested APIs rises. 

The experimental findings highlight the 
considerable advantages of integrating higher-
order connectivity data, markedly enhancing the 
recommendation effect. Furthermore, it is clear 
that the performances of both GAT (Graph 
Attention Network) and GraphSAGE are inferior 
to the suggested technique. This comparative 
research reinforces the practicality and importance 
of incorporating the network structure's topology 
into the node representations. The proposed 
method integrates topological insights with node 
embeddings, thereby improving the precision of 
recommendations and facilitating a deeper 
comprehension of the network's structural 
dynamics. 
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In this section, ablation experiments are done 
for the core components of the model: 
SEGNN4SLP-1 indicates structural encoding only: 
SEGNN4SLP-2 removes structural encoding and 
learns node embedding with GAT only; 
SEGNN4SLP indicates fusion of structural 
encoding and node embedding, which is the 

method we propose. The experimental results are 

shown in Table Ⅲ. The SEGNN4SLP method has 

a significant improvement in Recall and nDCG 
values compared with SEGNN4SLP-1 and 
SEGNN4SLP-2. This indicates that the fusion 
structure encoding to node embedding helps to 
improve the prediction quality of the link. 

TABLE III RESULTS FOR SEGNN4SLP, SEGNN4SLP-1，SEGNN4SLP-2. 

Methods 

Recall nDCG 

Recall@5 Recall@25 nDCG@5 nDCG@25 

SEGNN4SLP-1 0.3389 0.4844 0.3486 0.3855 

SEGNN4SLP-2 0.3284 0.4964 0.3357 0.3746 

SEGNN4SLP 0.3598 0.5287 0.3617 0.4137 

E. Hyper parameters analysis 

In this subsection, we discuss the effect of the 
model hyperparameters used for data training on 
the recommendation performance. We fixed the 
other parameters and changed only the 
hyperparameters to conduct the experiments. The 
hyperparameters include user or API embedding 
dimension d, path control length . 

Figure 6 shows the embedding size of the user 
and API for Recall@25. We can observe that 
increasing the embedding size of the user and API 
initially improves recommendation performance. 
More specifically, when the embedding size 
increases from 16 to 32, Recall@25 increases 
from 0.5145 to 0.5297. However, when the 
embedding size exceeds 32 Recall@25 the value 
starts to decline rapidly. This observation suggests 
that a moderate embedding size can provide 
sufficient information storage space during 
training. If the embed size is too small, 
information about some users or apis in the embed 
may be lost. On the contrary, if the embedding size 
is too large, it may lead to information redundancy 
and increase the time overhead of model training. 

Figure 6 shows the effect of path length at 
Recall@25. We can observe that increasing the 
length of the target node path initially improves 
the recommended performance. More specifically 
when the length =1 grows to =3, Recall@25 
increases from 0.511 to 0.5264. However, the 
Recall@25 value starts to decrease rapidly when 

the length grows. This observation suggests that a 
moderate path length allows for the best topology 
efficacy. 
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Figure 6 Impact of different embedding size d 
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Figure 7 Impact of different path length λ  
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IV. RELATED WORK 

Most current research in service categorization 
and recommendation predominantly focuses on 
extracting unstructured data using document 
representation techniques. These strategies 
typically entail steps such as aligning keywords 
identified in other service descriptions or assessing 
the semantic proximity between various services. 
The classification outcomes often aggregate 
services with analogous characteristics into a 
singular category. Nevertheless, these keyword-
centric methodologies are significantly dependent 
on the quality and pertinence of the terms 
contained inside the database. Furthermore, 
service descriptions are frequently articulated 
manually by service providers, potentially leading 
to inconsistencies and mistakes that undermine the 
overall precision of service classification. 

To address the constraints of keyword-based 
approaches, researchers have commenced the 
investigation of diverse semantic-based service 
categorization methodologies. These methods 
often entail the extraction of probabilistic topics 
from service descriptions through sophisticated 
vector space models to assess the similarity 
between services and categorize them accordingly. 
Notable instances of these methodologies 
encompass the probabilistic topic models PLSA 
(Probabilistic Latent Semantic Analysis) and LDA 
(Latent Dirichlet Allocation), in addition to neural 
network-driven document embedding approaches. 
These methodologies generally entail initially 
acquiring prospective subject or functional 
unstructured vectors to represent service 
documents. Consequently, suitable classifiers are 
trained according on the similarity among these 
vectors. Topic models are particularly efficacious 
as they can convert the high-dimensional 
document word vector space into a more tractable 
low-dimensional unstructured vector space. 
Nonetheless, a significant shortcoming of these 
methods is their frequent neglect of the discourse 
order information embedded in textual data, which 
is essential for comprehending the context and 
semantics of service descriptions. 

In recent years, Graph Neural Networks (GNN) 
have developed as a potent deep learning 
technique for extracting properties of network 

relationships. Graph Neural Networks (GNNs) 
have been extensively utilized throughout multiple 
fields of service computing, encompassing service 
combination, service recommendation, service 
clustering, and service categorization. Many of 
these applications concentrate on deriving network 
characteristics from service isomorphic graphs. A 
burgeoning cohort of academics acknowledges the 
capacity of GNNs to elucidate concealed network 
structural attributes through the formulation of 
meta-paths or meta-graphs that integrate various 
node and edge kinds. This method utilizes diverse 
information to acquire more efficient and complete 
service network data. Researchers seek to improve 
the precision and comprehensiveness of service 
classification and recommendation systems by 
integrating GNNs with diverse graph structures, 
hence offering more sophisticated and contextually 
enriched insights into service functionality and 
interrelations. 

In conclusion, whereas conventional keyword-
based and preliminary semantic-based service 
categorization approaches possess advantages, 
they are also accompanied by considerable 
drawbacks, especially regarding keyword quality 
and the absence of discourse order information. 
The emergence of GNNs signifies a substantial 
advancement in tackling these difficulties, 
providing a more refined and adaptable method for 
extracting and employing network properties to 
enhance service classification and 
recommendation. 

V. CONCLUSIONS 

This research thoroughly examines a neural 
network-based API recommendation methodology 
that utilizes a sophisticated method called 
structural encoding. This technique effectively 
collects contextual topological data, which is 
crucial for link prediction. Link prediction 
fundamentally seeks to forecast possible 
relationships among diverse entities inside a 
network. To enhance the precision of this 
prediction, the research presents SEGNN4SLP, an 
innovative and unique GNN (Graph Neural 
Network) framework. This methodology uniquely 
integrates node properties with graph structural 
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data, providing more full insight of the network's 
complexities. 

Extensive testing on real-world datasets has 
shown that incorporating structural encoding into 
the embedding learning process markedly 
improves API recommendation performance. The 
gathering of cooperative signals from both users 
and APIs enhances the accuracy and dependability 
of these recommendations. 

Prospectively, numerous intriguing 
opportunities for future investigation exist. One 
route entails the integration of more 
comprehensive information regarding the node 
attributes of the API. Examining the particular 
labels linked to these nodes may yield further 
insights. Moreover, the advancement of more 
adaptive techniques for computing weight 
coefficients is a significant area of emphasis. 
Through the ongoing refinement and evolution of 
these methodologies, we anticipate increasingly 
precise and effective API recommendations in the 
future. 

REFERENCES 

[1] Ramadhanu P B, Priandika A T. Rancang Bangun Web 
Service Api Aplikasi Sentralisasi Produk Umkm Pada 
Uptd Plut Kumkm Provinsi Lampung. Jurnal Teknologi 
Dan Sistem Informasi, 2021, 2(1): 59-64. 

[2] Cao B, Peng M, Xie Z, et al. PRKG: Pre-Training 
Representation and Knowledge-Graph-Enhanced Web 
Service Recommendation for Mashup Creation. IEEE 
Transactions on Network and Service Management, 
2024.  

[3] Wu S, Shen S, Xu X, et al. Popularity-aware and 
diverse web APIs recommendation based on correlation 
graph. IEEE Transactions on Computational Social 
Systems, 2022, 10(2): 771-782. 

[4] Qi L, He Q, Chen F, et al. Data-driven web APIs 
recommendation for building web applications. IEEE 
transactions on big data, 2020, 8(3): 685-698. 

[5] Li S, Niu D, Wang Y, et al. Hyper scale FPGA-as-a-
service architecture for large-scale distributed graph 
neural network//Proceedings of the 49th Annual 
International Symposium on Computer Architecture. 
2022: 946-961.  

[6] Zhang M, Cui Z, Neumann M, et al. An end-to-end 
deep learning architecture for graph 
classification//Proceedings of the AAAI conference on 
artificial intelligence. 2018, 32(1). 

[7] Wang Y Q, Dong L Y, Jiang X Q, et al. KG2Vec: A 
node2vec-based vectorization model for knowledge 
graph[J]. Plos one, 2021, 16(3): e0248552. 

 

   

 


