
International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

DOI: 10.2478/ijanmc-2024-0032 9

SEGNN4SLP: Structure Enhanced Graph Neural

Networks for Service Link Prediction

Yuxi Lin

School of Computer Science and Technology

Hainan University

Hainan, China

E-mail: 13654669668@163.com

Mengfei1 Li

School of Computer Science and Technology

Hainan University

Hainan, China

E-mail: 18346011668@163.com

Nuo Chen

School of Computer Science and Technology

Hainan University

Hainan, China

E-mail: nuochen0107@163.com

Abstract—For the provision of accurate link prediction,

this study's neural network-based method for API

recommendation uses structure encoding to capture

topological context. SEGNN4SLP, a Graph Neural

Network (GNN) framework that integrates node

attributes and graph structure to enhance GNNs' link

prediction skills, makes a substantial contribution.

Utilizing an actual dataset with 21,900 APIs, 6,435

Mashups, and 13, 340 interactions,

ProgrammableWeb.com was the source of the evaluation.

Eighty percent of the data were test sets and twenty

percent were training sets after single API-invocation

Mashups were eliminated. The results demonstrate high

link prediction accuracy, which is attributed to the

incorporation of structural encoding in embedding

learning and improved collaborative signal extraction

from users and APIs, which improves API

recommendation performance overall.

Keywords-Network Representation; Web Service;

Mobile Network; Graph Attention network; Link

Prediction

I. INTRODUCTION

The advancement of service computing
technologies and the rise of service markets have
resulted in the proliferation and consumption of an
increasing variety of services (such as APIs and
Mashups) in diverse application situations. [1].
Mashup represents a lightweight Web application
that consists of multiple existing Web APIs or

services in a flexible manner to meet the complex
application needs of users.

According to Programmable Web's statistics,
there is a concentration of usage since the top
10(200) most often used Web API calls in
Mashups account for around 30.6% (99%) of all
Mashup calls [2]. Consumers may ignore lesser-
known APIs because they frequently rely on these
well-known ones [3]. By utilizing implicit co-call
records between APIs in past Mashups, it is
possible to forecast the likelihood of usage of less
popular APIs, which helps to solve the problem of
users missing out on potentially useful APIs for
their Mashup requirements.

Figure 1 Maup example schematic

The service Link Prediction results can be used
to diversify Web API recommendations [4]. With
the use of service graph data [4], Graph Neural

mailto:13654669668@163.com
mailto:13654669668@163.com

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

10

Networks (GNNs) have emerged as a potent
framework for service management applications.
By using a message passing paradigm to
recursively collect neighborhood vectors, they are
very good at predicting service links [5].
Nevertheless, conventional GNNs merely convey
node properties while passing messages; they do
not explicitly take topological information into
account, which has been shown to be
advantageous in topology-based techniques.

The design and encoding of structural elements
and their integration into GNNs for service link
prediction are the two primary difficulties that this
work attempts to solve. A topology-based strategy
provides a Path Labeling (PL) method to extract
structural information in order to address the first
difficulty. An encoder is then used to transform
these features into structural embeddings. The
Network Topology Structure Enhanced Graph
Neural Network (SEGNN4SLP) incorporates
configurational embeddings into GNNs to tackle
the second challenge. To improve GNN speed,
SEGNN4SLP maps structural embeddings to the
same space as the original node features using a
feature fusion module. By utilizing both structural
and attribute information, SEG can optimize link
prediction through the joint training of the
structural encoder and GNN. The pipeline consists
of labeling nodes according to their positional
roles, creating structural embeddings, fusing them
with GNNs, and extracting a closed 1-hop
subgraph surrounding target nodes. This fusion
forecasts the presence of linkages between target
nodes when paired with the results of the GAT
model.

II. METHODOLOGY OF SEGNN4SLP

This research presents the SEGNN4SLP
framework, which includes node embedding and
structure encoding, for service link prediction
(Figure 2). A closed 1-hop subgraph is extracted
around two target nodes in order to forecast
linkages between them. To extract structural
characteristics, each node is labeled according to
its positional role in the subgraph; structural
encoding is then used to construct structural
embeddings. The GAT model receives these
embeddings fused with node attributes as input.

The presence of a link between nodes a and b is
predicted by the correlation between the structural
embeddings of the target nodes and the output of
the GAT model.

a b

a b

Extract enclosing

subgraph of target node

a b

Path Labeling

GAT

Structure encoding a b

Structure embedding

Feature

fusion

a b

Structure

similarity

Semantic

similarity

Figure 2 The SEGNN4SLP structure

A. Structure Encoding

Most GNN models primarily utilize edges for
message delivery, overlooking network topology.
Incorporating network topology as additional input
can significantly enhance network embedding
quality. This section discusses designing and
encoding structural features. Various local patterns
around target nodes exist. Assessing both node
topology and connecting edges is essential for
measuring node correlation. Graph structure
methods, including Common Neighbors (CN),
Jaccard, Adamic/Adar (AA), and Katz measures,
aid in link forecast missions. These approaches
can be unified below:

 i, js(i, j) f (, N(i), N(j)) (p)l

l 1

l 




  

where s(i, j) denotes the similarity between

nodes iv and jv ; i, jpl
denotes the number of nodes

iv and jv at path length l; N(i), N(j) denotes the

neighbors of nodes iv and jv .

The pathways of target nodes and their

surrounding nodes i, jpl
are two crucial elements

N(i), N(j) in Equation 1. Although Graph Neural

Networks (GNNs) already integrate information
from neighboring nodes, routes provide further
inputs to GNN models, highlighting their
importance. The proposition characterizes the
route between two target nodes as a specific form

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

11

of topological attribute, described in the following
manner:

Path Labeling: Where ijp denotes the path

between the target node iv and jv . The path has no

duplicate vertices and duplicate edges. To
represent these paths as topologies available to the
nodes, Path Labeling (PL) is proposed to label the
nodes under each different path and assign values
for example, the nodes of the target node 1 hop
neighbors have the same Path Labeling. For nodes
that appear in various routes in the meantime, the
shortest route is chosen to label the nodes.

a b

c

a

ed

b a

df e

b

g

0c 0c 0c 0c 0c
0c

1c 2c 2c 2c 2c4c 4c

Figure 3 The SEGNN4SLP framework demonstrates the use of route

labeling (PL) on a 1-hop subgraph that includes nodes a and b. In (a), we
notice a route with a length of 2, in (b) a route with a length of 3, and in (c)

a route with a length of 4. Every unique pathway is depicted using a

distinct hue. The nodes are labeled and the labels are presented above the
nodes. Nodes with different labels are shown in distinct colors.

Figure 3 shows a schematic diagram of the path
marking in a subgraph consisting of 1-hop
neighbors of two target nodes. As in Figure 3(a),

node c is a common neighbor of node a and node b,
marked as; as in Figure 3(b), node a and node b
are on the path of path length node 3 (a-d-e-b),
marking nodes d and e as; as in Figure 3(c), nodes
d and e are on the route of path length 3 (a-d-e-b)
and length 4 (a-f-d-e-b), and the shorter route is
selected to label nodes d and e, labeled as; nodes f
and g are on the path of path length 4, labeled as.

By labeling the nodes under different paths by
PL, for these topological characteristics from the
routes of every pair of target nodes, a structural
encoding method is additionally proposed to learn
the representation vectors from them. The
definition of the encoding approach is shown
below:

In Algorithm 1, GCN layer and MLP are

utilized to fit f and  in Equation 1. With proper

coefficients and sufficient layers, it is hoped that
the approximation error can be neglected. In
addition, A constant is used λ to truncate paths
that are too long, and these differences prevent PL
overfitting and make the model more robust.

Algorithm 1 : structure encoding

input: target nodes iv , jv ; enclosing subgraph sG

output: node embedding z

1 /*extracts the routes*/ 2 i, jp ⬅(G,i,j)

3 /* generate node structural features */ 4 u i. j S u Sc {p ,G }, G ;  

5
()

u u u SZ one hot(min(c ,λ)), G ;   0
 6 /* encode with a GCN layer and a MLP */

7 for Su G do 8
() ()

u v uZ AGGREGATE(Z , N(u));  1 0

9 end for 10 u u u sZ MLP(z), G ;  

B. Node Embedding Representation

GAT

1x

2x

3x

4x 5x

6x

7x

1x

2x

3x

4x 5x

6x

11a
7x

12a

13a 14a
15a

16a

Figure 4 Assign different coefficients between nodes by GAT.

The utilization of an undirected graph to
describe a network consisting of online APIs and
Mashups enables the application of graph neural
network techniques for obtaining vector
representations of nodes. One way to accomplish
this is by using Graph Attention Networks (GAT)
to assign different weight coefficients to nodes and
combine the information from neighboring nodes,
including the target node's own features, to update
and obtain a new vector representation of the

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

12

target node. The influence between nodes i and j
can be mathematically represented as:

  e ,ij i ja Wh Wh  

where a denotes the attention parameter of node

i on node j, W denotes the weight matrix, and ih ,

jh denotes the vector representation of node i and j.

Besides, the impact of node i on node j is not
equivalent to the impact of node j on node i ,

e eij ji .

After obtaining the importance between pairs of
nodes based on the same route, the softmax
function is used for normalization.


  

  

exp
a

e

eexp
i

ij

k N

ij

ik





 ∈

 

where  denotes the activation function, ||

denotes the splicing operation, a ij denotes the

attention coefficients of the lower nodes i and j,

and iN represents the set of neighbors of node i .

The normalized coefficient is used to calculate
the weighted mean of the transformed
characteristics of neighbor nodes (nonlinear
activation function is used) as the new feature
vector representation of node i:


i

i ij j

j N

h a Wh
 
 






∈

 

After obtaining the new vector representation
of the node, the next consideration is how to fuse
the node vector and the structure information.

C. Feature Fusion

An effective approach to acquire knowledge
about both node properties and structural data is to
directly feed them into Graph Neural Networks
(GNNs) such as SEAL [6]. Nevertheless, these
two categories of characteristics have varied
meanings: node properties usually provide

semantic data, while structural characteristics are
directly obtained from the graph topology. Hence,
acquiring proficiency in both semantic and
structural knowledge presents a considerable
obstacle.

A framework called SEGNN4SLP has been
developed to combine these two functionalities.
Figure 6 depicts the intricate architecture. The
SEGNN4SLP architecture consists of two
components: a structural encoder and a deep
Graph Neural Network (GNN). In the structural
encoder, the process begins with encoding the

node structural features (uc) having a single layer

of GCNs. The reason for using a single layer of
Graph Convolutional Networks (GCNs) is that the
multi-hop data is naturally present in the route.
Therefore, a single layer of aggregation suffices to
upgrade the two desired target nodes. The output
of the GCN layer are adopted as the input of a

MLP to fit f and  in Equation1. The output

vectors are denoted uz of MLP as the

configurational embeddings of vu . The structure

similarity score structureS is predicted with another

MLP on basis of the Hadamard product of

structural embeddings of target nodes iz and jz .

  structure i jS MLP z z  

Figure 5 Architecture of SEGNN4SLP

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

13

In the deep GNN model, the configurational

embeddings uz and the original node properties

ux are originally combined using a Multilayer

Perceptron (MLP). The feature fusion module
combines the features of x and z into a unified
feature space. The deep GNN model can utilize the
fused features as input to learn from both the
structural characteristics and the original node
characteristics. In this context, a Graph Attention
Network (GAT) is selected as the primary Graph
Neural Network (GNN) model, and the
SortPooling [7] layer is utilized to obtain the
ultimate representation output of the two specific
nodes of interest. An MLP is used to forecast the
high semantic similarity score, represented as

semanticS . The structural similarity mark and the

semantic similarity mark are subsequently merged
to ascertain the ultimate probability of link
presence:

 structure semanticS S S   

For better learning of the model parameters, the
SEGNN4SLP model uses cross entropy as the loss
function, defined below:

    
1

1
l log 1 log 1

N

t t t t

t

oss y s y s
N 

     

Where st denotes the fraction of possible links t;

ty denotes the label of link t; N denotes the

number of training edges. The function reacts
similar embedding of friends and dissimilar
embedding of enemies. The cross-entropy loss is
reduced constantly to update the coefficients, and
the vector representation Z of nodes is got when
the loss tends to be stable after several
optimizations, and the algorithm procedure is
specified below.

Stable after several optimizations, and the
algorithm procedure is specified below.

Algorithm 2 : SEGNN4SLP

input: target edge (i,j); input graph G ; node characterizes X

output: forecast score s,

1 /* extracts enclosing subgraph */ 2 sG G

3  s structural Encoding , , , ;u uz S G i j G   4  structure i jS MLP z z

5 /* feature fusion */  , s s, , ;u i j uc p G G  

 
 

0
0

sx x , ;u u u G  

 0

sx x , ;u u uMLP G
 

   
 

 0

sh x , ;u u u G  

6 /* GNN message passing */for k=1,2…K do: for u G do:
 k

h 4;u Equation endend

7
  k

sh h | , 1, , ;G uSortPool u G k K   8  hsemantic GS MLP

9 structure semanticS S S 

III. EXPERIMENTS

A. Dataset description

This study's methodology was meticulously
assessed through a series of controlled trials

performed on Programmable Web (PW), the
largest and most renowned public repository for
web APIs. PW functions as an extensive platform
that rigorously aggregates and methodically
organizes a wide range of data related to web APIs
and their corresponding applications. The study

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

14

concentrated on the methodical analysis of the web
APIs and mashups present on PW, specifically
highlighting the assessment of the interactions
between these APIs and their users, referred to as
mashups.

The dataset employed for these assessments
comprises a significant aggregation of 21, 900
individual APIs, 6,435 unique mashups, and a
comprehensive account of 13, 340 specific
interactions between these mashups and APIs.
Table 1 presents a detailed summary of the
experimental dataset, encompassing essential
measurements and properties vital to the
evaluation process. To guarantee the robustness
and validity of the evaluation, the study
intentionally removed mashups comprising only a
single API call from the dataset, thereby
concentrating on more intricate and representative
interactions.

For the evaluation, the dataset was carefully
divided into two separate subsets: 80% of the
exchange records were allocated as the training set,
employed to construct and enhance the models and
methodologies under investigation. Twenty
percent of the data was designated for the test set,
acting as the essential benchmark for evaluating
the performance and effectiveness of the trained
models. This stratified method guaranteed a
thorough and impartial examination, establishing a
solid basis for analyzing the technique's relevance
and efficacy in practical situations.

B. Evaluation metrics

User preferences can be output by every model
for all APIs. To assess the effectiveness of Top-K
recommendation and user preference ranking, two
assessment metrics are employed. Recall@K
represents the proportion of actual APIs in the top
- K API recommendation list to the actual APIs
required by user preferences. Its definition is
shown below:


   

 

| topk |
Re @

| |

actural APIs APIs
call k

actural APIs


  

nDCG@K gives varying weights to every API
in the top - K recommendation list, with higher-

ranked APIs receiving bigger weights. One of its
commonly adopted definitions is:



 

 1 2

2 1
@k

log 1

rel in

i

DCG
i





  


 

c

1 2

1
@ k

log 1i

IDCG
i




  


@

@k
@

DCG k
nDCG

IDCG k
  

TABLE I COMPARISON OF DIFFERENT METHODS IN RECALL@K.

 K=5 K=10 K=15 K=20 K=25

Node2vec 0.2185 0.2915 0.3473 0.3761 0.4012

GCN 0.2729 0.3461 0.3684 0.4561 0.4716

GraphSAGE 0.2816 0.3553 0.3941 0.4611 0.4933

GAT 0.2810 0.3513 0.3902 0.4687 0.4910

SEAL 0.2984 0.3588 0.4013 0.4701 0.4987

SEGNN4SLP 0.3514 0.3981 0.4586 0.4981 0.5231

TABLE II COMPARISON OF DIFFERENT METHODS IN NDCG@K.

 K=5 K=10 K=15 K=20 K=25

Node2vec 0.2314 0.2786 0.3278 0.3529 0.3604

GCN 0.2811 0.3378 0.3588 0.3687 0.3786

GraphSAGE 0.2823 0.3468 0.3770 0.3819 0.3793

GAT 0.2811 0.3398 0.3764 0.3987 0.3859

SEAL 0.2994 0.3410 0.3896 0.4055 0.3986

SEGNN4SLP 0.3516 0.3814 0.4156 0.4258 0.4288

C. Baseline methods

In order to verify the effectiveness of our
proposed method, we choose the following
method to compare with our proposed method:

Node2vec is a traditional graph embedding
technique that represents nodes as low-
dimensional vectors. Node2vec utilizes random
walks to effectively capture both local and global
structures inside a graph, rendering it a versatile
instrument for many graph-related tasks. After
embedding the nodes into low-dimensional vectors,
a Multilayer Perceptron (MLP) predictor is
subsequently employed. This predictor employs a

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

15

combination of the original node features and the
Node2vec output vector as input, thereby
incorporating both structural information and
intrinsic node qualities to improve predictive
performance. The MLP adeptly models intricate,
nonlinear relationships, efficiently utilizing this
enhanced feature set to generate precise
predictions.

Conversely, Graph Convolutional Networks
(GCNs) are prominent neural networks that
characterize graphical convolution via spectrum
analysis. Graph Convolutional Networks (GCNs)
function by altering and disseminating node
attributes via the graph's Laplacian matrix, thereby
encapsulating the spectral characteristics of the
graph. This methodology enables GCNs to
intrinsically comprehend and leverage the graph's
topology, rendering them exceptionally proficient
for jobs like node classification and graph
categorization.

GraphSAGE, a prevalent graph neural network,
presents an innovative methodology by utilizing
sampling and aggregation techniques to facilitate
inductive learning for previously unobserved
nodes. In contrast to transductive approaches that
necessitate the complete graph during training,
GraphSAGE generalizes by acquiring the ability to
aggregate feature information from local
neighborhoods. The inductive feature of
GraphSAGE enables it to manage graphs with
changing structures, rendering it especially
advantageous in dynamic situations when the
graph is not entirely known in advance.

SEAL (Subgraph Embedding Attributed Link
prediction) is a link prediction technique that
derives link representations from tagged subgraphs
using the Deep Graph Convolutional Neural
Network (DGCNN). SEAL functions by extracting
subgraphs surrounding prospective edges and
subsequently employing DGCNN to derive
embeddings that include the structural and
semantic attributes of these subgraphs. This
acquired knowledge is then utilized to forecast the
probability of connections, offering a solid and
comprehensible method for link prediction.

Graph Attention Networks (GAT) incorporate
attention mechanisms into graph neural networks

based on spatial domains. GATs dynamically
allocate varying weights to adjacent nodes
according on their significance to the center node,
thus enhancing node attributes through the
weighted representation of neighboring nodes.
This attention-based methodology enables Graph
Attention Networks (GATs) to concentrate on the
most significant relationships within the graph,
hence improving its efficacy in capturing intricate
dependencies and interactions among nodes.

In conclusion, these methods exemplify a range
of strategies for utilizing graph structures in
diverse machine learning applications. Node2vec,
GraphSAGE, and GAT each provide distinct
advantages that render them appropriate for certain
applications and contexts. Collectively, they
constitute a comprehensive toolkit for tackling
various graph-related issues.

D. Experimental results

The efficacy of the proposed strategy will be
thoroughly assessed in comparison to the
previously mentioned baseline approach. The
findings in Table 1 unequivocally demonstrate that
the suggested method regularly surpasses the
baseline in all cases. The technique exhibits a
about 13% improvement over the ideal baseline
when assessed using Recall@K. This substantial
enhancement is especially remarkable considering
that, in fact, users generally need less than 5 APIs
to create a Mashup. Thus, the marginal advantages
of recall tend to decrease as the quantity of
suggested APIs rises.

The experimental findings highlight the
considerable advantages of integrating higher-
order connectivity data, markedly enhancing the
recommendation effect. Furthermore, it is clear
that the performances of both GAT (Graph
Attention Network) and GraphSAGE are inferior
to the suggested technique. This comparative
research reinforces the practicality and importance
of incorporating the network structure's topology
into the node representations. The proposed
method integrates topological insights with node
embeddings, thereby improving the precision of
recommendations and facilitating a deeper
comprehension of the network's structural
dynamics.

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

16

In this section, ablation experiments are done
for the core components of the model:
SEGNN4SLP-1 indicates structural encoding only:
SEGNN4SLP-2 removes structural encoding and
learns node embedding with GAT only;
SEGNN4SLP indicates fusion of structural
encoding and node embedding, which is the

method we propose. The experimental results are

shown in Table Ⅲ. The SEGNN4SLP method has

a significant improvement in Recall and nDCG
values compared with SEGNN4SLP-1 and
SEGNN4SLP-2. This indicates that the fusion
structure encoding to node embedding helps to
improve the prediction quality of the link.

TABLE III RESULTS FOR SEGNN4SLP, SEGNN4SLP-1，SEGNN4SLP-2.

Methods

Recall nDCG

Recall@5 Recall@25 nDCG@5 nDCG@25

SEGNN4SLP-1 0.3389 0.4844 0.3486 0.3855

SEGNN4SLP-2 0.3284 0.4964 0.3357 0.3746

SEGNN4SLP 0.3598 0.5287 0.3617 0.4137

E. Hyper parameters analysis

In this subsection, we discuss the effect of the
model hyperparameters used for data training on
the recommendation performance. We fixed the
other parameters and changed only the
hyperparameters to conduct the experiments. The
hyperparameters include user or API embedding
dimension d, path control length .

Figure 6 shows the embedding size of the user
and API for Recall@25. We can observe that
increasing the embedding size of the user and API
initially improves recommendation performance.
More specifically, when the embedding size
increases from 16 to 32, Recall@25 increases
from 0.5145 to 0.5297. However, when the
embedding size exceeds 32 Recall@25 the value
starts to decline rapidly. This observation suggests
that a moderate embedding size can provide
sufficient information storage space during
training. If the embed size is too small,
information about some users or apis in the embed
may be lost. On the contrary, if the embedding size
is too large, it may lead to information redundancy
and increase the time overhead of model training.

Figure 6 shows the effect of path length at
Recall@25. We can observe that increasing the
length of the target node path initially improves
the recommended performance. More specifically
when the length =1 grows to =3, Recall@25
increases from 0.511 to 0.5264. However, the
Recall@25 value starts to decrease rapidly when

the length grows. This observation suggests that a
moderate path length allows for the best topology
efficacy.

0 20 40 60 80 100 120 140

0.500

0.505

0.510

0.515

0.520

0.525

0.530

Embedding Size d

 Recall@25

Figure 6 Impact of different embedding size d

1 2 3 4 8
0.500

0.505

0.510

0.515

0.520

0.525

0.530

path length

 Recall@25

Figure 7 Impact of different path length λ

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

17

IV. RELATED WORK

Most current research in service categorization
and recommendation predominantly focuses on
extracting unstructured data using document
representation techniques. These strategies
typically entail steps such as aligning keywords
identified in other service descriptions or assessing
the semantic proximity between various services.
The classification outcomes often aggregate
services with analogous characteristics into a
singular category. Nevertheless, these keyword-
centric methodologies are significantly dependent
on the quality and pertinence of the terms
contained inside the database. Furthermore,
service descriptions are frequently articulated
manually by service providers, potentially leading
to inconsistencies and mistakes that undermine the
overall precision of service classification.

To address the constraints of keyword-based
approaches, researchers have commenced the
investigation of diverse semantic-based service
categorization methodologies. These methods
often entail the extraction of probabilistic topics
from service descriptions through sophisticated
vector space models to assess the similarity
between services and categorize them accordingly.
Notable instances of these methodologies
encompass the probabilistic topic models PLSA
(Probabilistic Latent Semantic Analysis) and LDA
(Latent Dirichlet Allocation), in addition to neural
network-driven document embedding approaches.
These methodologies generally entail initially
acquiring prospective subject or functional
unstructured vectors to represent service
documents. Consequently, suitable classifiers are
trained according on the similarity among these
vectors. Topic models are particularly efficacious
as they can convert the high-dimensional
document word vector space into a more tractable
low-dimensional unstructured vector space.
Nonetheless, a significant shortcoming of these
methods is their frequent neglect of the discourse
order information embedded in textual data, which
is essential for comprehending the context and
semantics of service descriptions.

In recent years, Graph Neural Networks (GNN)
have developed as a potent deep learning
technique for extracting properties of network

relationships. Graph Neural Networks (GNNs)
have been extensively utilized throughout multiple
fields of service computing, encompassing service
combination, service recommendation, service
clustering, and service categorization. Many of
these applications concentrate on deriving network
characteristics from service isomorphic graphs. A
burgeoning cohort of academics acknowledges the
capacity of GNNs to elucidate concealed network
structural attributes through the formulation of
meta-paths or meta-graphs that integrate various
node and edge kinds. This method utilizes diverse
information to acquire more efficient and complete
service network data. Researchers seek to improve
the precision and comprehensiveness of service
classification and recommendation systems by
integrating GNNs with diverse graph structures,
hence offering more sophisticated and contextually
enriched insights into service functionality and
interrelations.

In conclusion, whereas conventional keyword-
based and preliminary semantic-based service
categorization approaches possess advantages,
they are also accompanied by considerable
drawbacks, especially regarding keyword quality
and the absence of discourse order information.
The emergence of GNNs signifies a substantial
advancement in tackling these difficulties,
providing a more refined and adaptable method for
extracting and employing network properties to
enhance service classification and
recommendation.

V. CONCLUSIONS

This research thoroughly examines a neural
network-based API recommendation methodology
that utilizes a sophisticated method called
structural encoding. This technique effectively
collects contextual topological data, which is
crucial for link prediction. Link prediction
fundamentally seeks to forecast possible
relationships among diverse entities inside a
network. To enhance the precision of this
prediction, the research presents SEGNN4SLP, an
innovative and unique GNN (Graph Neural
Network) framework. This methodology uniquely
integrates node properties with graph structural

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

18

data, providing more full insight of the network's
complexities.

Extensive testing on real-world datasets has
shown that incorporating structural encoding into
the embedding learning process markedly
improves API recommendation performance. The
gathering of cooperative signals from both users
and APIs enhances the accuracy and dependability
of these recommendations.

Prospectively, numerous intriguing
opportunities for future investigation exist. One
route entails the integration of more
comprehensive information regarding the node
attributes of the API. Examining the particular
labels linked to these nodes may yield further
insights. Moreover, the advancement of more
adaptive techniques for computing weight
coefficients is a significant area of emphasis.
Through the ongoing refinement and evolution of
these methodologies, we anticipate increasingly
precise and effective API recommendations in the
future.

REFERENCES

[1] Ramadhanu P B, Priandika A T. Rancang Bangun Web
Service Api Aplikasi Sentralisasi Produk Umkm Pada
Uptd Plut Kumkm Provinsi Lampung. Jurnal Teknologi
Dan Sistem Informasi, 2021, 2(1): 59-64.

[2] Cao B, Peng M, Xie Z, et al. PRKG: Pre-Training
Representation and Knowledge-Graph-Enhanced Web
Service Recommendation for Mashup Creation. IEEE
Transactions on Network and Service Management,
2024.

[3] Wu S, Shen S, Xu X, et al. Popularity-aware and
diverse web APIs recommendation based on correlation
graph. IEEE Transactions on Computational Social
Systems, 2022, 10(2): 771-782.

[4] Qi L, He Q, Chen F, et al. Data-driven web APIs
recommendation for building web applications. IEEE
transactions on big data, 2020, 8(3): 685-698.

[5] Li S, Niu D, Wang Y, et al. Hyper scale FPGA-as-a-
service architecture for large-scale distributed graph
neural network//Proceedings of the 49th Annual
International Symposium on Computer Architecture.
2022: 946-961.

[6] Zhang M, Cui Z, Neumann M, et al. An end-to-end
deep learning architecture for graph
classification//Proceedings of the AAAI conference on
artificial intelligence. 2018, 32(1).

[7] Wang Y Q, Dong L Y, Jiang X Q, et al. KG2Vec: A
node2vec-based vectorization model for knowledge
graph[J]. Plos one, 2021, 16(3): e0248552.

