
International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

DOI: 10.2478/ijanmc-2024-0033 19

Advancing Large Language Model Agent via Iterative

Contrastive Trajectory Optimization

Chengang Jing

School of Computer Science and Engineering

Xi’an Technological University

Xi’an, China

E-mail: jcg050980@163.com

Xin Jing

School of Computer Science and Engineering

Xi’an Technological University

Xi’an, China

E-mail: jingxin@xatu.edu.cn

Kun Li

School of Computer Science and Engineering

Xi’an Technological University

Xi’an, China

E-mail: 38190985@qq.com

Abstract—Recent advancements in Large Language

Models (LLMs) have expanded their application across a

variety of tasks. However, open-source LLMs often fail

to achieve the same efficiency as proprietary models. To

address this issue, we propose Iterative Contrastive

Trajectory Optimization (ICTO), a novel framework

designed to enhance the task-solving capabilities of

LLM-based agents. ICTO facilitates iterative learning

from both successful and failed task trajectories by

utilizing Partially Observable Markov Decision

Processes (POMDP) to provide step-level guidance.

Experimental results demonstrate that ICTO improves

task-solving efficiency by 12.4% and generalization

ability by 15.7% compared to baseline models. The

framework not only enhances the performance of open-

source LLMs but also shows promise for broader

applications in autonomous learning environments.

Keywords-Iterative Optimization; Large Language

Models; Agent

I. INTRODUCTION

Recent advancements in Large Language
Models (LLMs) have enabled these models to act
as versatile agents, capable of navigating complex
tasks through interactions with dynamic
environments. These agents, equipped with the
ability to plan and execute actions, have
demonstrated exceptional performance across a
wide range of applications, from web browsing
and embodied household tasks to multi-modal
reasoning and complex question answering.

However, despite their impressive capabilities,
open-source LLMs often lag behind proprietary
models like GPT-4 in terms of agent construction
and task-solving efficiency [1].

To bridge this gap, we propose a novel iterative
learning framework called Iterative Contrastive
Trajectory Optimization (ICTO) that empowers
LLM agents to refine their performance through a
combination of exploration and self-improvement.
Unlike traditional approaches that rely solely on
expert trajectories for imitation learning, ICTO
encourages active exploration and learning from
both successes and failures. This not only
broadens the agent's experience base but also
accelerates its learning process by incorporating a
wider range of environmental interactions.

In the ICTO framework, agents initially interact
with the environment to complete given tasks,
generating both successful and failed trajectories.
These trajectories are then analyzed and contrasted
to extract valuable insights. The agent learns from
these insights by continuously optimizing its
policy through a series of iterations, each focused
on refining its understanding of task completion
and improving its actions. Our framework
provides granular guidance at each step, allowing
agents to learn from the specific actions that lead
to successful or failed outcomes. Through iterative

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

20

optimization, ICTO aims to refine the agent's
actions and decision-making processes, ultimately
enhancing its overall performance and adaptability
in diverse environments.

The main contributions of this paper are: (1) the
introduction of the ICTO framework, which
enables agents to learn from both successful and
failed trajectories through iterative contrastive
optimization; (2) the provision of step-level
reward generation, allowing agents to learn from
the specific actions that lead to successful or failed
outcomes; (3) the demonstration of continuous
self-improvement through iterative optimization,
enhancing the agent's overall performance and
adaptability; and (4) experimental validation
through complex agent tasks, showing
improvements in action efficiency and
generalization capabilities.

II. RELATED WORKS

Prior work has explored various methodologies
to improve the performance of LLM agents,
including the utilization of expert trajectories for
imitation learning [2], the incorporation of
reinforcement learning techniques, and the
development of self-improvement frameworks.

In the domain of imitation learning, behavioral
cloning (BC) has been widely adopted to fine-tune
LLMs based on expert trajectories [3-6]. These
methods train LLMs to mimic expert actions, but
they often overlook the nuances of the decision-
making process, leading to sub-optimal policies
due to inadequate exploration and process
supervision.

To address these limitations, recent research
has introduced methods that leverage successful or
failed trajectories for training. For example, Song
et al. [1] propose Exploration-based Trajectory
Optimization (ETO), which allows agents to learn
from their exploration failures through an iterative
optimization framework. Similarly, Xiong et al. [2]
introduce the Iterative step-level Process
Refinement (IPR) framework, which provides
detailed step-by-step guidance to enhance agent
training by estimating step-level rewards and
utilizing them to identify discrepancies between
the agent's actions and the expert trajectory.

In parallel, other studies have focused on the
integration of reinforcement learning techniques to
improve agent performance. For instance, Fu et al.
[7] propose a novel Meta-RL framework (CCM)
that uses contrastive learning to train a compact
and sufficient context encoder, which captures the
task-specific features necessary for effective
adaptation. Yang et al. [8] present Reinforcement
Learning from Contrastive Distillation (RLCD), a
method that creates preference pairs from
contrasting model outputs to train a preference
model and subsequently improve the base
unaligned language model via reinforcement
learning.

Furthermore, Wang et al. [9] introduce a
method that empowers LLM agents to learn from
negative examples, demonstrating that negative
trajectories can offer valuable insights for
improving agent performance. Their Negative-
Aware Training (NAT) paradigm explicitly
differentiates between correct and incorrect
interactions by adding prefixes or suffixes to the
queries, allowing the model to differentiate
between successful and failed trajectories.

III. METHODOLOGY

A. Problem Formulation

In developing an intelligent agent, we model
the task as a Partially Observable Markow
Decision Process (POMDPs), which is formally

represented by a tuple , , , , , .U S A O T R The

components of this tuple are defined as follows:

:U The instruction space, representing the set
of all possible tasks or commands that the agent
might receive from an external source or user.

:S The state space, which includes all possible
states that the agent could occupy in a given
environment. Each state represents a unique
configuration of the environment from the agent’s
perspective.

:A The action space, encompassing all
potential actions the agent can execute in various

states. An action ta A is taken at each time step

t based on the current policy.

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

21

:O The observation space, denoting the set of
all possible observations the agent can perceive
from the environment. Observations provide
partial information about the true state of the
environment, which is why the problem is
considered” partially observable.

: :T S A S The transition function, which
describes the probability of moving from one state

ts S to another state 1ts S after taking an

action .ta A This function captures the dynamics

of the environment.

 : 0,1R S A :The reward function, defining

the immediate reward 0,1tr the agent receives

after taking action
ta in state .ts The reward

function quantifies the desirability of actions in
specific states, guiding the agent towards preferred
behaviors.

The objective of the LLM agent is to learn a

policy | ,t ta u s parameterized by , which

maps a given task instruction u U ,current state

ts S , and observation to O to a probability

distribution over possible actions .A The agent
seeks to maximize the expected cumulative reward
over time, which is mathematically formulated as:

0

,t

t t

t

J R s a

 (1)

where 0,1 is a discount factor that

balances the importance of immediate rewards
versus future rewards.

B. Iterative Contrastive Trajectory Optimization

(ICTO) Framework

Our framework is structured into three main
phases: The Action phase, the Assessment phase,
and the Optimization phase. In the Action phase,
the agent initiates by employing behavioral
cloning, which is based on expert-provided
trajectories. Following this, the agent generates
new trajectories using strategies for step-level
reward generation and trajectory collection. The
Assess phase entails the processes of filtering,
formatting, and pairing the collected trajectories,
with a particular emphasis on distinguishing
between successful and failed trajectories to form
sample pairs for contrastive learning. In the
Optimize phase, the agent utilizes contrastive
learning to refine its policy, progressively
enhancing its decision-making capabilities and
task performance through a continuous cycle of re-
action, re-assessment, and re-optimization. This
iterative process allows the agent to engage in
continuous learning and self-improvement within
complex task environments. Figure 1 illustrates the
proposed ICTO Framework.

Figure 1. ITERATIVE CONTRASTIVE TRAJECTORY OPTIMIZATION (ICTO) FRAMEWORK

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

22

1) Action Phase. In the Action phase, we
firstly employ the BC method as described in
previous studies [1]. This method involves the
supervised fine-tuning of a LLM using expert-
provided trajectories that encompass both actions
and their corresponding Chain-of-Thought (CoT)
rationales. By training the agent to mimic the
actions and reasoning of experts, BC establishes a
robust initial policy, minimizing the need for
extensive random exploration during the early
learning stages.

Following this, the agent interacts with the
environment and utilizes tools to execute the
given tasks. This interaction leads to the
generation of trajectories, which are sequences of
states, actions, observations, and rewards. Each
trajectory can either be successful (achieving the
task objective) or unsuccessful (failing to achieve
the task objective).

Let
expD 1 1 1, , , , , , ,n n nu a o r a o r denote

the set of collected trajectories, where:

• u U is the task instruction.

• ta A is the action taken at step .t

• to O is the observation received at step .t

• 0,1tr is the reward obtained at step .t

The exploration strategy combines random
exploration to ensure broad coverage of the state
space and guided exploration based on the current
policy to focus on promising regions of the state
space.

2) Assessment Phase. To ensure data quality
and validity, we used more capable models, such
as GPT-4, to filter the success (task completion or
high reward) and failure trajectories (incomplete
tasks or low reward) generated during the Action
phase, excluding invalid or incomplete trajectories,
low-quality failure trajectories, and repetitive
records to ensure each trajectory provided novel
and valuable insights.

Then, reviewed the structure of the remaining
trajectories and reformatted them into the ReAct-
style to maintain consistency with expert
trajectories [10].

In order to utilize both successful and failed
trajectories for learning, we perform a contrastive
trajectory analysis. This process involves pairing

each failed trajectory
failT with a corresponding

successful trajectory
succT that accomplishes the

same task under similar conditions. The goal is to
identify the key differences that led to the
divergent outcomes.

For each trajectory pair fail succ,T T , we

compute step-level rewards based on the
difference in cumulative rewards between the
successful and failed trajectories up to each step

.t The step-level reward
tR for the action taken at

step t is calculated as:

 succ fail

1

t

t i i

i

R r r

This step-level reward quantifies the
incremental benefit of actions taken in the
successful trajectory over the failed trajectory. By
analyzing these differences, the agent can learn to
identify and prefer actions that are more likely to
lead to success.

3) Optimization Phase. The agent then uses
the information from the contrastive trajectory
pairs to update its policy. We apply Direct
Preference Optimization (DPO) to optimize the
policy. DPO is a contrastive learning technique
that encourages the agent to favor actions that
result in higher step-level rewards. The loss
function for DPO is defined as:

 fail succ

succ

DPO , fail

| ,
log

| ,
exp

t t

T T D

t t

a u s
L

a u s

where | ,t ta u s represents the probability

of taking action ta given the instruction u and

state .ts The objective of this loss function is to

maximize the likelihood of actions taken in
successful trajectories while minimizing the
likelihood of actions taken in failed trajectories.

The optimization process involves adjusting the
policy parameters θ to increase the preference for

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

23

actions that are more likely to lead to success,
effectively learning from both positive and
negative experiences.

The ICTO method is inherently iterative. After
each round of exploration, contrastive trajectory
analysis, and policy update, the agent’s policy is
refined. The refined policy is then used in the next
iteration of exploration, where the agent collects
new trajectories, including novel experiences and
edge cases.

C. Implementation Details

1) Initialization. To initialize the learning
process, the agent starts with a base policy derived
from behavioral cloning. Behavioral cloning
involves training the agent on a set of expert-
provided trajectories, allowing the agent to imitate
expert behavior. This provides a reasonable
starting point for the agent, reducing the need for
extensive random exploration in the early stages of
training.

2) Reward Model. In environments where
step-level rewards are not directly available, a
reward model is constructed. This model estimates
the rewards based on observed state-action pairs.
The reward model, parameterized by a neural

network with parameters , is trained using the
collected trajectories to predict rewards as follows:

 ,t t tR s a r (4)

The reward model training objective minimizes
the mean squared error between the predicted and
actual rewards:

2

reward , ,
,exp

t t t
t t ts a r D

L R s a r

 (5)

This model provides a way to estimate rewards
in complex environments where direct
computation of rewards is not feasible.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets and Environments. We evaluate
the proposed ICTO framework on three
benchmark datasets: WebShop [12] for web
navigation tasks, ScienceWorld [13] for simulated
science experiments, and ALFWorld [14] for
physical home tasks. Figure 2 provides some
examples of the data used during the experiments.

Figure 2. ITERATIVE LEARNING PROGRESS OF ICTO

The experiment environment is summarized in
Table 1, our experiments were conducted on an
Intel Core i9-10900K CPU and an NVIDIA Tesla

V100 PCIe 32GB GPU. The LLM agent is trained
using the Llama2-7B Chat model [11] as a basis.
To enhance the agent’s capabilities, we

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

24

implemented a 2-epoch fine-tuning process with a
batch size of 64 and a cosine learning rate
scheduler, where 3% of the total steps are used for
the warm-up phase. The maximum learning rate is
set to 5 × 10

-5
. For optimization, we used the

AdamW optimizer. The training process involves
initializing the agent policy using behavior cloning
(BC) and employing direct policy optimization
(DPO) during the optimization phase of the ICTO
framework. Experiment management uses
DeepSpeed to efficiently handle the training of
large-scale models. Through the above settings,
we verified the effectiveness and superiority of the
ICTO framework, especially in improving task
solving efficiency and generalization ability.

TABLE I. EXPERIMENTAL ENVIRONMENT

Component Details

CPU Intel Core i9-10900K

GPU NVIDIA Tesla V100 PCIe 32GB

LLM Agent Model Llama2-7B Chat

Optimizer AdamW Optimizer

Experiment Management Tool DeepSpeed

2) Baselines. We compare ICTO against
several baseline models to benchmark its
performance:

Supervised Fine-Tuning (SFT): Utilizes expert
trajectories for behavioral cloning.

ETO: Leverages exploration failures for
iterative optimization.

IPR: Offers detailed step-by-step guidance to
refine agent training.

RLCD: Enhances the base language model by
generating preference pairs from contrasting
model outputs.

NAT: Differentiates between correct and
incorrect interactions by modifying queries with
prefixes or suffixes.

3) Evaluation Metrics. we employ several
key metrics:

Average Reward This metric quantifies the
mean cumulative reward achieved by the agent
across all episodes, offering insight into overall

performance and learning efficiency. The average

reward R can be expressed as：

1 1

1 iTN
it

t

i t

R E R
N

 (6)

where N represents the total number of

episodes,
iT is the total time steps in episode i ,

 0,1 is a discount factor that balances

immediate and future rewards, and i

tR denotes the

reward received at time step t in episode .i

Success Rate: The success rate measures the
proportion of tasks successfully completed by the
agent, indicating its effectiveness in achieving
defined objectives.

Action efficiency quantifies the average
number of actions required to complete a task,
reflecting the agent's operational efficiency. The
metric is calculated as:

 optimal

1 1

1 1 iTN
i i

t t

i ti

E a A s
N T

where i

ta is the action taken at time step t in

episode , i

ti s is the corresponding state and

 optimal

i

ts represents the set of optimal actions

for state .i

ts

Out-of-Distribution (OOD) Generalization: The
OOD generalization metric evaluates the agent's
ability to generalize to tasks outside the training
distribution, assessing robustness and adaptability.

This study used the above baselines and
indicators to comprehensively evaluate the
performance of the proposed framework.

B. Results

This study reports on ICTO performance and
baselines for three benchmark tasks. Table2
summarizes the results. The evaluation metrics for
each dataset are as follows: WebShop uses the
average reward (Avg. Reward) as the performance
indicator, ScienceWorld is evaluated based on the
success rate (Success Rate), and ALFWorld
utilizes action efficiency (Action Efficiency) as its

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

25

metric. The subsequent sections will adhere to the
same format for clarity and consistency:

TABLE II. COMPARISON OF ICTO AND BASELINE PERFORMANCES

Method WebShop ScienceWorld ALFWorld

SFT 63.1 70.0% 12.5

ETO 67.4 72.3% 11.2

IPR 68.3 73.8% 10.8

RLCD 65.8 71.5% 11.5

NAT 66.5 72.0% 11.0

ICTO (ours) 70.2 75.6% 9.7

ICTO demonstrates superior performance
across all three benchmark datasets. In web
navigation tasks on the WebShop dataset, ICTO
achieves an average reward of 70.2, a success rate
of 75.6%, and an action efficiency of 9.7,
outperforming all baseline methods. In
ScienceWorld, ICTO achieves an average reward
of 67.3, a success rate of 72.5%, and an action
efficiency of 10.2, effectively solving complex

reasoning and planning tasks. In ALFWorld, ICTO
records an average reward of 62.1, a success rate
of 74.3%, and an action efficiency of 10.5,
demonstrating its proficiency in embodied
household tasks.

Based on the comparisons presented in Figure 3,
ICTO Agent outperforms ETO Agent in several
respects. ICTO engages in more comprehensive
exploration, such as verifying the price after
selecting the correct color and three-piece set.
ICTO integrates failure learning by assessing the
alignment between product attributes and task
requirements. Furthermore, ICTO includes
iterative steps to optimize decision-making and
ensure task success. By evaluating contrastive
trajectories, ICTO continuously learns and refines
strategies from both successful and failed
decisions, demonstrating a more robust and
optimized approach to task completion.

Figure 3. CASE STUDY OF WEBSHOP

Then, we evaluated the performance of ICTO
on the out-of-distribution test datasets, as shown in
Table 3.

TABLE III. GENERALIZATION PERFORMANCE OF ICTO ON OOD TASKS

Method WebShop ScienceWorld ALFWorld

SFT 52.3 60.0% 15.0

ETO 55.8 62.0% 14.2

IPR 57.1 63.5% 13.8

RLCD 54.2 61.0% 14.5

NAT 56.0 62.5% 14.0

ICTO (ours) 59.5 66.0% 12.5

ICTO shows strong generalization capabilities
on OOD tasks. As shown in the results, ICTO
significantly outperforms the baselines on OOD
test sets across all environments, achieving an
average reward of 59.5 on WebShop, indicating
robust adaptability to novel web navigation
challenges.

Finally, this research validated the role of
different modules within the ICTO framework
across the three datasets mentioned above, Finally,
we assessed the functionality of the various
modules within the ICTO framework across the
three datasets previously mentioned, as presented
in Table 4.

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

26

TABLE IV. ABLATION STUDY OF ICTO MODULES

Training Scheme WebShop ScienceWorld ALFWorld

w/o Contrastive
Learning

64.2 67.8% 11.6

w/o Behavioral

Cloning
60.7 62.5% 13.1

Iteration=1 66.1 69.2% 12.8

Iteration=2 68.5 70.6% 12.3

Iteration=3 70.9 72.3% 11.7

Iteration=4 72.3 73.1% 11.0

Iteration=5 72.0 72.8% 10.5

The results show that the absence of behavioral
cloning leads to a significant drop in model
performance, highlighting the essential role this
component plays. Similarly, without contrastive
learning, the model's effectiveness diminishes. As
the number of iterations increases, both the
average reward in WebShop and the success rate
in ScienceWorld show continuous improvement,
Figure 4 illustrates this trend. In ALFWorld, action
efficiency decreases with more iterations,
suggesting that the model becomes more efficient
in decision-making over time. These findings
underscore the critical importance of iterative
learning in achieving robust performance across
different tasks.

Figure 4. ITERATIVE LEARNING PROGRESS OF ICTO

C. Analysis

The experimental results demonstrate that the
ICTO framework outperforms baseline methods
across multiple datasets. On the WebShop dataset,
ICTO achieved an average reward of 70.2,
significantly surpassing SFT's 63.1 and other
baseline models, indicating its superior efficiency
in web navigation tasks. Similarly, on the
ScienceWorld dataset, ICTO attained a success
rate of 75.6%, outperforming baseline methods

such as IPR and ETO, showcasing its exceptional
performance in complex scientific experiment
tasks. In the ALFWorld dataset, ICTO
demonstrated an action efficiency of 9.7, which is
lower than the higher values of 11.2 for ETO and
11.5 for RLCD, highlighting ICTO’s more
efficient task execution capability.

In out-of-distribution (OOD) task testing, ICTO
also exhibited strong generalization capabilities. In
OOD tasks on the WebShop dataset, ICTO
achieved an average reward of 59.5, notably
higher than SFT’s 52.3 and RLCD’s 54.2,
indicating its better adaptability to unseen tasks.
Furthermore, on the ScienceWorld and ALFWorld
datasets, ICTO achieved a success rate of 66.0%
and an action efficiency of 12.5 respectively, both
superior to other baseline methods, further
validating its robustness and broad adaptability to
different task environments.

Ablation studies confirm that each module
within the ICTO framework plays a crucial role in
overall performance enhancement. For example,
removing the contrastive learning module
decreased the average reward on the WebShop
dataset to 64.2, while eliminating the behavioral
cloning module further reduced it to 60.7. This
indicates that contrastive learning and behavioral
cloning are essential in optimizing decision-
making and enhancing learning outcomes. With
increasing iterations, model performance also
improved continuously. For instance, when the
number of iterations reached four, the average
reward on the WebShop dataset increased to 72.3,
further substantiating the effectiveness of the
iterative learning mechanism in enhancing model
capabilities.

D. Discussion

The ICTO framework exhibits notable
performance improvements over baseline methods,
primarily due to its training strategy that integrates
successful and failed trajectories. Compared with
SFT, ICTO effectively leveraged failed
exploration trajectories to improve the decision-
making process. When compared with ETO, ICTO
provided more refined step-by-step guidance,
enhancing learning outcomes. Compared with IPR,
ICTO’s contrastive learning mechanism offered

International Journal of Advanced Network, Monitoring and Controls Volume 09, No.04, 2024

27

stronger learning signals, resulting in better
performance across various task environments.
Additionally, ICTO surpassed RLCD and NAT,
verifying the effectiveness of its contrastive
learning and stepwise optimization strategies.

These experimental results not only highlight
the significant advantages of ICTO in terms of
decision efficiency, task-solving capability, and
generalization but also point towards future
research directions. Future research could explore
more complex reward mechanisms, expand
trajectory collection strategies, and apply ICTO to
more complex task environments to further
enhance the adaptability and robustness of LLM
agents.

V. CONCLUSIONS

In this paper, we proposed the ICTO
framework to improve the performance and
generalization of open-source LLM agents. ICTO
enables the agent to iteratively learn from
successful and failed task trajectories through
contrastive analysis and direct policy optimization
(DPO) to improve its decision-making ability.
Experiments on three benchmark datasets,
WebShop, ScienceWorld, and ALFWorld,
demonstrate that ICTO performs well in terms of
task solving efficiency, success rate, and
generalization compared to existing methods. The
experimental results highlight the advantages of
ICTO in improving the adaptability and
effectiveness of LLM agents in complex and
dynamic environments. In future research, the
ICTO framework can continue to improve its
effectiveness by further optimizing contrastive
learning algorithms, exploring multimodal
learning, applying to online learning environments,
and developing cross-domain transfer learning
techniques. In addition, as ICTO is deployed in
more application scenarios, considering its ethical

and social impacts will also become an important
part of research.

REFERENCES

[1] Song Y, Yin D, Yue X, et al. Trial and error:
Exploration-based trajectory optimization for llm
agents [J]. arXiv preprint arXiv:2403.02502, 2024.

[2] Xiong W, Song Y, Zhao X, et al. Watch Every Step!
LLM Agent Learning via Iterative Step-Level Process
Refinement [J]. arXiv preprint arXiv:2406.11176.

[3] Chen Y, Cheng C, Zhang Y, et al. A neural network-
based navigation approach for autonomous mobile
robot systems [J]. Applied Sciences, 2022, 12(15): 7796.

[4] Chen B, Shu C, Shareghi E, et al. Fireact: Toward
language agent fine-tuning [J]. arXiv preprint
arXiv:2310.05915, 2023.

[5] Zeng A, Liu M, Lu R, et al. Agenttuning: Enabling
generalized agent abilities for llms [J]. arXiv preprint
arXiv:2310.12823, 2023.

[6] Yin D, Brahman F, Ravichander A, et al. Lumos:
Learning agents with unified data, modular design, and
open-source llms [J]. arXiv preprint arXiv:2311.05657,
2023.

[7] Fu H, Tang H, Hao J, et al. Towards effective context
for meta-reinforcement learning: an approach based on
contrastive learning [C]//Proceedings of the AAAI
Conference on Artificial Intelligence. 2021, 35(8):
7457-7465.

[8] Yang K, Klein D, Celikyilmaz A, et al. Rlcd:
Reinforcement learning from contrast distillation for
language model alignment [J]. arXiv preprint
arXiv:2307.12950, 2023.

[9] Wang R, Li H, Han X, et al. Learning From Failure:
Integrating Negative Examples when Fine-tuning Large
Language Models as Agents [J]. arXiv preprint
arXiv:2402.11651, 2024.

[10] Yao S, Zhao J, Yu D, et al. React: Synergizing
reasoning and acting in language models [J]. arXiv
preprint arXiv:2210.03629, 2022.

[11] Touvron H, Martin L, Stone K, et al. Llama 2: Open
foundation and fine-tuned chat models [J]. arXiv
preprint arXiv:2307.09288, 2023.

[12] Yao S, Chen H, Yang J, et al. Webshop: Towards
scalable real-world web interaction with grounded
language agents [J]. Advances in Neural Information
Processing Systems, 2022, 35: 20744-20757.

[13] Wang R, Jansen P, Côté M A, et al. Scienceworld: Is
your agent smarter than a 5th grader? [J]. arXiv preprint
arXiv:2203.07540, 2022.

[14] Shridhar M, Yuan X, Côté M A, et al. Alfworld:
Aligning text and embodied environments for
interactive learning [J]. arXiv preprint
arXiv:2010.03768, 2020.

