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Abstract—Violence detection can improve the ability to 

deal with emergencies, but there is still no data set 

specifically for violence detection. In this work, we 

propose VioData, a datasets specialized for detection in 

complex surveillance scenarios, and to more accurately 

assess the efficacy of these datasets, we propose a 

violence detection model based on target detection and 

3D convolution. The model consists of two key modules: 

spatio-temporal feature extraction module and spatio-

temporal feature fusion module. Among them, the 

spatio-temporal feature extraction module consists of a 

spatial feature module that extracts key frames using 

ordinary convolutional networks and a temporal feature 

extraction module that establishes temporal features 

using 3D convolution. The spatio-temporal feature 

fusion module Channel Fusion and Attention 

Mechanism (CFAM) fuses the temporal and spatial 

features. The experimental results indicate that the 

precision of the suggested detection model on UCF101-

24, JHMDB behavioral detection datasets, and our 

proposed violence detection datasets, VioData, is 

improved compared to other violence detection models, 

which not only verifies the validity of the datasets, but 

also provides a baseline for the subsequent research and 

improvement in this area. 

Keywords-Violent Behavior Detection; Datasets; 

Spatio-temporal Feature; Target Detection; Feature 

Fusion 

I. INTRODUCTION 

Violent behavior is defined as the use of force 
and other means to harm oneself or others, and 
violent behavior detection can serve as one of the 
roles to meet the growing public safety needs. 
Utilizing deep learning technologies in the domain 
of violent behavior detection can capture eligible 
violent behaviors from cameras and alert the 
police, which is a useful tool for public security 
officers' daily tasks. 

However, violent behaviors mostly occur 
outdoors, and in complex surveillance scenes with 
large field of view outdoors, the small size of the 
human target makes it challenging to locate the 
important parts of the body, many occlusions, and 
the complex background, which poses a great 
challenge to the detection of violent behaviors. In 
the existing public behavior detection datasets 
UCF101-24 and JHMDB, which contain 45 
categories of more common behaviors, there is no 
violence detection datasets specifically for 
complex surveillance scenes. Moreover, most of 
the existing behavior detection algorithms use a 
two-stage strategy, such as SlowFast [9] and other 
candidate areas are initially generated by two-stage 
detection algorithms, and then finally perform 
feature extraction and classification on the 
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candidate regions to ultimately determine the 
behavioral categories and locations. However, 
two-stage algorithms have been difficult to apply 
in complex surveillance scenarios, firstly, the 
method of obtaining candidate frame sequences 
through the detection algorithm cuts off the 
potential relationship between people and people, 
people and background, etc. Finally, the operation 
of analyzing all detected people is challenging to 
fulfill the real-time requirements in reality. 

Therefore, this paper collects publicly available 
surveillance videos of public places and takes 
them as the research object, and uses them as the 
raw data to produce a set of violence detection 
datasets, VioData, which is specialized in complex 
surveillance scenes; and offers a violence 
detection module utilizing target identification and 
three-dimensional convolutional networks. and 
target detection for accomplishing the violence 
detection task more efficiently. The module 
integrates the spatio-temporal feature data of the 
video sequence and extracts the spatial properties 
of the key frames through ordinary convolutional 
network, extracts temporal characteristics from the 
video using a 3D convolutional network, and 
finally fuses the spatio-temporal features through 
spatio-temporal feature fusion network. In addition, 
the module UCF101-24, the JHMDB datasets, and 
the VioData datasets constructed in this paper on 
which extensive experiments were carried out, and 
the experimental findings verify the effectiveness 
of the datasets and the module's ability to produce 
competitive outcomes in the detection of violent 
behavior in complex outdoor scenes. The main 
contributions of this paper are as follows: 

 VioData, a datasets specialized for violence 
detection. 

 Because of the occlusion phenomenon in 
complex violent behavior scenes, a temporal 
feature extraction network is proposed in 
this paper. which introduces 3D 
Convolutional Block Attention model (3D-
CBAM) attention mechanism and spatio-
temporal depth separable convolution to 
better utilize the information between 
consecutive frames to better extract the 
features in the video sequences, and to 
improve how the network perceives the 

foreground features; secondly, to detect the 
aggressive behavior more precisely, the 
introduced Atrous Spatial Pyramid Pooling 
(ASPP) model is introduced in order to 
more accurately detect violent acts, and the 
fusion of feature maps of different sensory 
fields is obtained by utilizing different 
scales of convolution. 

 In order to naturally fuse spatio-temporal 
information for a later, more precise 
identification of aggressive behavior, a 
spatio-temporal feature fusion module was 
designed. 

II. RELATED WORK RESEARCH 

We will review the work related to behavioral 
detection datasets and review the work on 
techniques used for behavioral detection from four 
perspectives: behavioral detection based on 
traditional features, behavioral detection based on 
recurrent neural networks, behavioral detection 
based on multi-stream neural networks, and 
behavioral detection based on three-dimensional 
convolutional networks. 

A. Behavioral detection datasets  

Behavior detection datasets typically contain 
data collected from sources such as videos, sensors, 
etc. And are used to train and test algorithms for 
recognizing and analyzing human behavior. The 
UCF101 [1] datasets is among the biggest datasets 
of human behavior that are currently accessible, 
containing 101 action categories, almost 13,000 
video snippets, totaling 27 hours of footage. Real 
user-uploaded films with crowded backdrops and 
camera motions make up the database. HMDB 
with Joint Annotation (JHMDB) [2] datasets A 
subset of the Human Metabolome Database 
(HMDB) [3] datasets contains 21 action categories, 
each involving the movement of a single character. 
The dataset was annotated with 2D joint model, 
providing information on the character's pose, 
optical flow, and segmentation for analyzing 
action recognition algorithms. The Kinetics [4] 
datasets is a human action video datasets 
introduced by DeepMind that contains 400 human 
action categories, each with 400 video snippets, 
each lasting roughly 10 seconds, from different 
YouTube videos. The dataset covers a wide range 
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of action categories, including human-object 
interaction and human-human interaction. 

B. Behavior detection based on traditional 

features 

Before the popularization of deep learning 
techniques, researchers used traditional features to 
process image information. The technique mostly 
included manually removing characteristics from 
video frames, which were then fed into support 
vector machines and decision trees for further 
behavioral analysis and identification. Xu [5] et al. 
suggested a technique for detecting violent videos 
that uses sparse coding and MoSIFT 
characteristics. Initially, the low-level description 
of the video is extracted using the MoSIFT 
algorithm, then feature selection is performed by 
Kernel Density Estimation (KDE) to eliminate 
noise, and finally the selected MoSIFT features are 
further processed using a sparse coding scheme to 
obtain highly discriminative video features. Febin 
[6] proposed a new descriptor Motion Boundary 
SIFT (MoBSIFT) to more effectively identify the 
characteristics of violent actions in the video. This 
module is able to filter out the random motions in 
the nonviolent behaviors, and represent and 
classify the violent videos by sparse coding 
technique, which has high accuracy and robustness 
in detecting violent behaviors. 

C. Recurrent neural network based behavior 

detection 

By receiving the hidden state of the preceding 
moment, a recurrent neural network (RNN) may 
model the frames in a movie as an ordered 
sequence, which affects the state of the next 
moment, and the extracted temporal features are 
able to express human behavior. With networks 
like Long Short-Term Memory (LSTM), this 
behavior detection technique first extracts spatial 
data from the ordered sequence of frames, and 
then it goes on to extract temporal features from 
the video. Sudhakaran [7] proposed ConvLSTM, 
which aggregates frame-level violent behavioral 
features in the video by capturing the spatio-
temporal features and captures the differences 
between consecutive frames by computing the 
motion changes, which reduces the amount of data 
to be processed. Liang [8] et al. used GhostNet 

and ConvLSTM to construct a long-term recurrent 
convolutional network and introduced a multiple 
attention mechanism in the video preprocessing 
stage to enhance the attention to the key 
information in the video, which improves the 
ability of detecting violent behavior in the video. 

D. Behavior detection based on multi-stream 

neural networks 

Multi-stream neural networks usually have 
many branches, before employing a classifier to 
identify behaviors, each branch independently 
extracts many feature streams from a large number 
of samples and aggregates the extracted features. 
Feichtenhofer [9] et al. designed a SlowFast 
network based on frame rate speed. The network 
contains two paths, Slow path and Fast path, to 
extract spatial semantic information and motion 
information at lower and higher frame rates, 
respectively, to enhance behavior detection. Next, 
Okan [10] proposed a multi-modal parallel module 
You Only Watch Once (YOWO) based on a dual 
channel structure. The network has two branches: 
one uses 2D-CNN to extract the spatial properties 
of key frames, while the other uses 3D-CNN to 
extract the spatio-temporal features of the video 
segment made up of earlier frames, and finally, 
fuses the features using channel fusion and the 
attention mechanism to perform frame-level 
detection for behavioral Localization of actions. Li 
[11] et al. suggested a novel technique for 
detecting violence based on a multi-stream 
detection model, which combines three distinct 

streams—a temporal stream, a local spatial stream, 

and an attention-based spatial RGB stream— to 

improve the performance of violent behavior 
recognition in videos. Islam [12] et al. suggested 
an effective dual-stream deep learning architecture 
using pre-trained MobileNet and LSTM 
(SepConvLSTM), in which one stream manages 
frame background suppression and the other 
handles frame differences between neighbors. In 
order to provide discriminative features that aid in 
differentiating between violent and nonviolent 
activities, a straightforward input preprocessing 
technique highlights moving objects in the frames 
while suppressing the nonmoving background and 
recording the inter-frame actions. 
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E. Behavior detection based on 3D convolutional 

networks 

Conventional 2D convolutional neural 
networks that have been trained on single-frame 
images are unable to reflect the correlation 
between consecutive frames, while 3D 
convolutional networks are able to directly extract 
frames from the video, and then fed into 3D CNNs 
to extract the spatio-temporal features in the frame 
sequences, the network learns the characterization 
of the behaviors in the video after multilayered 
convolutional and pooling operations, and 
accurately detects the behaviors in the video, and it 
is currently an important research direction. 
Carreira [13] based on the Inception network and 
extended it from 2D to 3D, proposed the network 
Inflated 3D ConvNet (I3D) which is able to 
process video data for behavioral detection. 
Direkoglu [14] computes optical flow vectors for 
every frame to produce a motion quantum image 
(MII), It is then used to train a Convolutional 
Neural Network (CNN) to identify abnormal 
behavioral events in a crowd. The proposed MII is 
mainly based on the optical flow magnitude and 
angular difference calculated from the optical flow 
vectors in consecutive frames, which helps to 
distinguish between normal and abnormal 
behavior. Dong [15] et al. suggested the attentional 
residual 3D network (AR3D) and the residual 3D 
network (R3D), which were model ed by 
upgrading the current 3D CNNs by adding the 
residual structure and attention mechanism, The 
behavior detection performance of the model has 
been improved in different degrees. Li [16] et al. 
establish a 3D-DenseNet dense connectivity 
model , extract spatio-temporal features using 3D-
DenseNet algorithm, redistribute the weights of 
each feature using the Squeeze-and-Excitation 
Networks (SENet) channel attention model , and 
then use the transition layer sampling, and then 
pass the outcomes to the fully connected layer 
using the global average pooling technique to 
finish the violence detection task. XU [17] et al. 
proposed the SR3D algorithm, which adds a BN 
layer before the 3D convolutional operation and 
presents the ReLu activation mechanism to 
enhance the network's learning capabilities while, 
extends the SE attention mechanism to 3D by 
introducing it into the 3D convolutional model and 

boosts the weights of the important channels, 
which improves the ability to detect the human 
behaviors in the video in the network. 

III. VIOLENCE TEST DATASETS PRODUCTION 

Because there are no samples of datasets 
dedicated to violence detection in the current 
public datasets in the field of video behavior 
detection such as UCF101-24, JHMDB and 
Kinectics. Therefore, in this paper, we produce 
VioData, a violence detection datasets specialized 
for complex surveillance scenarios. 

First, this paper collects about 1500 video clips 
of violent behavior from publicly available real 
surveillance video data. 

Second, since the length of the collected 
surveillance videos varies between 1-10 minutes 
and there are not many clips in which violent 
behaviors occur, the collected surveillance videos 
are manually cropped to segment the videos into 
short videos of violent behaviors of about 10 
seconds. Then, the obtained short videos were 
subjected to frame extraction, before extracting the 
frames, the videos were converted into easily 
labeled RGB image sequences and the blurred 
images were discarded, and the extracted video 
frames were deposited into a separate folder to 
obtain a separate clip of violent behavior using a 
frequency of 1 frame every 5 frames. 

Finally, the human targets of violent acts in the 
video are labeled with frame-level truth frames 
using the LabelImg tool, based on the collected 
violent actclip clips, the manual labeling method is 
used, the violent act targets are labeled with 
rectangular frames, and the targets with more than 
50% occlusion are not labeled, and the violent act 
targets of the part-frame Pictures are labeled as 
Fig.1 illustrates. The labeled information is saved 
as an XML file, and the xml file contains the 
image file address, the truth frame coordinate 
information and the behavioral category of the 
target. 
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(a)abuse 

 

(b)attack 

 

(c)fight 

Figure 1.  Illustration of a sample of labeled acts of violence 

IV. METHODOLOGY OF THIS PAPER 

The framework of the violence detection 
module is shown in Fig.2, the framework has two 
branches of inputs, the output is a series of video 
frames with a violence detection frame containing 
the outcomes of the violence category, while the 
first branch consists of a series of video frames 
and the second branch consists of extracted 
keyframes. There are three modules in the module: 
one for spatiotemporal feature extraction, one for 
spatiotemporal feature fusion, and the structure of 
the spatio-temporal feature extraction model 
consists of an I3D network and a CSPDarkNet-
Tiny network for extracting spatial features. The 
3D convolution-based I3D network video is used 
for temporal modeling and for extracting temporal 
features; the CSPDarkNet-Tiny network model is 
the 2D features of the keyframes and is used for 
extracting the spatial features of the keyframes. 
The temporal and spatial feature fusion model 
integrates the feature information of the two 
branches and filters the valid information among 

them, lastly, to obtain the violence detection 
findings, the fused feature map results are input 
into the prediction head output. 

A. Spatio-temporal feature extraction module 

1) Timing feature extraction module 

Violence detection for complex surveillance 
scenarios requires high real-time modeling, and 
occlusion phenomena are likely to occur in the 
violence scenarios. The 3D Inception (3D) Inc 
model in the Inflated 3D ConvNet (I3D) network 
uses ordinary 3D convolution, but its 
computational overload makes it difficult to 
perform real-time violence detection. The original 
Inflated 3D ConvNet (I3D) network is prone to 
omission and false detection when detecting 
violence with occlusion phenomenon. Therefore, 
in this work, according to the features of the 
original I3D network structure, spatio-temporal 
depth-separable convolution and 3D-CBAM 
attention are introduced to improve both efficiency 
and accuracy. 

In terms of real-time, after frame-by-frame 
convolution operation, the spatio-temporal 
information is combined by point-by-point 
convolution to extract higher-level feature 
representation in real time. The improved 3D Inc 
reduces the computational effort of the 3D Inc 
module exponentially by replacing the standard 3 

× 3 × 3 convolution in the middle two branches 

with spatio-temporal depth-separable convolutions 

of 1 × 3 × 3 and 3 × 1 × 1 shapes. The 3D Inc 

module finally fuses the features of the four 
branches. The structural diagram of the optimized 
3D Inc network is shown in (c) in Fig.2. 

In terms of accuracy, the Convolutional Block 
Attention model (CBAM)[18], which aggregates 
the temporal dimension information based on 
CBAM, is introduced in this study since the 
temporal information in the video sequences 
cannot be properly utilized. The structure diagram 
of 3D-CBAM is shown in (b) in Fig.2. The 
Channel Attention model (CAM) and the Spatial 
Attention model (SAM) make up 3D-CBAM. The 
Channel Attention model processes the input 
feature map F3D to produce the channel weight 
vector. which is multiplied with F3D to obtain the 
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Figure 2.  The violence detection algorithm's framework is displayed in Fig.2. The model for extracting spatio-temporal features and the spatio-temporal 

feature fusion module make up the majority of the framework. The spatio-temporal feature extraction model is composed of the temporal feature extraction 
model and the spatial feature extraction module, and the I3D network is the network structure of the temporal feature extraction model, as illustrated in (a); 

(b)(c) are the 3D-CBAM Attention Mechanism and 3D Inception (3D Inc) module, respectively. The Atrous Spatial Pyramid Pooling (ASPP) model is added 

at the end of the spatial feature extraction model, which has the CSPDarkNet-Tiny network as its network structure, which is shown in (d), where rate 
denotes the expansion rate of the null convolution. atrous Spatial Pyramid Pooling (ASPP) has five branches, including one ordinary convolutional branch, 

three null convolutional branches, and one global average pooling branch; (e) shows the overall structure of Channel Fusion and Attention 

Mechanism(CFAM); D is the final output feature map of CFAM, and C1 and C2 are the number of feature map output channels for the I3D network and the 
ASP module, respectively.

F'3D weighted feature map. The Spatial 
Attention model then processes F'3D to get the 
spatial weight, which is then multiplied by the 
feature F'3D to get the final feature F'3D, which 
combines spatial and channel attention. channel 
and spatial focus of the F''3D feature. The 
following is the computational expression for 3D-
CBAM: 

  
33 3 3DD C D DF M F F    

  
33 3 3DD S D DF M F F     

where 
3DSM  represents the spatial attention, 

and 
3DCM ∈R

C × D × 1 × 1
 represents the channel 

attention. D is the number of frames in the video 

sequence frame, while C is the number of feature 
map channels. In Fig.2, the enhanced I3D network 
structure is displayed in (a). 

2) Spatial feature extraction module 

Wang [19] et al proposed CSPDarkNet 
combines the features of Cross Stage Partial 
Network (CSP) structure and DarkNet framework, 
which is able to maintain or even improve the 
capability of CNN while reducing the amount of 
computation. In this paper, considering the 
scenario of violence detection, we need to use an 
efficient and lightweight network, so we chose a 
lightweight CSPDarkNet network, CSPDarkNet-
Tiny, its network structure is shown in Fig.3, but 
because of the violence detection method, the 
lightweight network may lead to insufficient 
computational power to deal with occlusion or 
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background complexity, which leads to the 
decrease of accuracy. Therefore, this paper 
introduces CSPDarkNet-Tiny's last layer is 
supplemented with the Atrous Spatial Pyramid 
Pooling (ASPP) module. The ASPP input feature 
maps are branched through five null convolutions 
to obtain feature maps with five different sensory 
fields, which are spliced and fused along the 

channel dimensions, and then adjusted using a 1×
1 convolutional number of channels to acquire 
more specific visual information. Fig.2(d) displays 
the ASPP model's structure. 
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Figure 3.  CSPDarkNet-Tiny Network Overall Structure 

B. Spatio-temporal feature fusion module 

The temporal fusion attention model(TFAM) 
[19] is an attention mechanism module for 
improved video object detection, which improves 
object representation by combining multi-frame 
and single-frame attention modules and dual-
frame fusion modules, but it has too much 
computation and weak generalization ability, 
which is not conducive to the application of 
violent behavior detection. Therefore, Channel 
Fusion and Attention Mechanism (CFAM) is 
introduced in this paper to effectively integrate the 
temporal features obtained by I3D network with 
the spatial features obtained by CSPDarkNet-Tiny 
network to record the inter-channel dependencies. 
Fig.2(e) displays the CFAM model's structure 
diagram. 

The following is how feature fusion specifically 
works: firstly, the feature maps obtained from the 
first two networks are spliced to obtain the feature 
map A∈R

(C1+C2)×H×W
, then the correlation between 

the feature maps is captured using the local 
receptive fields of the convolutional layers, and 
the correlation feature map B∈R

C×H×W
 is 

produced by passing the feature map A through 
two convolutional layers. Since direct correlation 
calculation would make the computation 

complicated, a reshaping operation is performed 
on B to obtain a reshaped feature map F. The 
elements of each channel in the feature map are 
converted into one-dimensional vectors to simplify 
the computation. The expression is as follows: 

  vectorization C H W C H WB R F R       

First, the resulting feature map F is dot-
producted with its transposed feature map F

T
 to 

obtain a covariance matrix G∈R
C×N

, where N=H

×W. This matrix reveals the correlation between 

different features. Its expression is as follows: 

 TG F F   

 ,

1

N

i j ik jk

k

G F F


   

Where Gi,j represents the inner product between 
the feature map F and F

T
. After that, the resulting 

matrix G is subjected to softmax operation to 
generate the channel attention feature map 
M∈R

C×C
. The softmax function is able to 

transform the values between the range of 0-1, 
which represents the attention weight of each 
position. the expression of M feature map is as 
follows: 


,

1

ij

ij

G

i j C
G

j

e
M

e





 

In order for the attention map M to have an 
effect on the original feature map, the matrix F' is 
obtained by dot-product multiplication of M with 
the reshaping matrix F, which makes the features 
of the parts with high weights more prominent. 
Then F' is reshaped to F''∈R

C×H×W
 of the same 

size as B. 

 F M F    

To alleviate the gradient vanishing problem and 
accelerate the model convergence, F'' is multiplied 
with the hyperparameter α and superimposed with 
the feature map B using the expression in (8) to get 
the feature map C∈R

C×H×W
, the final spatio-

temporal feature map D∈R
C×H×W

 with the 
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attention weights is obtained by consecutively 
applying two convolutions to the resultant feature 
map C. 

 C F B     

C. Loss function 

The loss function proposed in this paper 
contains three components: classification 

prediction loss 
clsL , localization loss 

rect L , and 

confidence loss objL . 

The classification prediction loss formula is as 
follows: 


 

i

n

x

i i N
x

n 1

e
y sigmoid x

e


 


 

  
1

1
,

cls

N

cls i BCE

n

L y y L
N 

    

    log (1 ) log 1
clsBCE i iL y y y y      

where xi is the category's projected value and N 
is the total number of categories in the datasets, yi 
is the current category probability, and y is the true 
value of the current category. 

The localization loss formula is as follows: 


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Where w
gt

 as well as h
gt

 are the target real 
frame's width and height, the target predicted 
frame's width and height, v, which is the value of 
the projected frame normalized by extrapolating 
the width-to-height ratio of the predicted frame to 
the actual frame, and p

2
, which is the distance 

between the predicted frame's centroid and the real 

frame's centroid, where α represents the balance 
between the loss resulting from the measurement 
of aspect ratio and the loss due to IoU. The 
confidence loss is publicized as follows: 
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where C is the current grid region's confidence, 
Ci is the expected value of confidence, and N is the 
number of feature points. 

The three loss functions above are integrated to 
get the total loss function with the following 
formula: 

 1 2 3cls rect objL L L L         

To ensure that the weights of the various loss 
terms are balanced, the hyperparameters α1, α2 and 
α3 are set. where α1 has a value of 0.4, α2 has a 
value of 0.3 and α3 has a value of 0.3. 

V. EXPERIMENTS AND ANALYSIS OF RESULTS 

A. Experimental setup 

The Kinectics datasets are used to train the 
model suggested in this research, and the custom 
datasets VioData are used to refine it. 

In order to be able to enrich the training set and 
make the model better acquire the effective 
features in the video frames, three data 
enhancement operations are adopted in this paper, 
including horizontal flipping, random scaling, and 
color enhancement. The data enhancement 
operations expand the datasets, reduce overfitting, 
enhance the generalization ability of the model, 
and improve the robustness of the model. 

The training settings are displayed in Table Ⅰ 

below. 

TABLE I.  PARAMETER SETTINGS IN NETWORK TRAINING 

Parameter Setting 

Initial Learning Rate 0.001 

Epoch 230 
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Parameter Setting 

ReSize （416,416） 

Weight Decay 0.0005 

Optimizer Adam 

Configure the model parameters to be saved 
once per ten iterations while the model is being 
trained, and save the output of the training loss and 
validation loss once at the completion of each 
epoch. When the loss iteration reaches 180 rounds, 
the training loss is still decreasing, but the loss of 
the validation set starts to rise, indicating that the 
model has been overfitted, so the model 
parameters at the end of the 180th epoch are saved 
as the optimal parameters. 

The effect of the network model for violence 
detection on the VioData datasets is visualized as 
shown in Fig.3, where a video of a violent act is 
subjected to model inference to obtain the location 
of the violent act and its category, proving the 
effectiveness of the VioData datasets. 

 

Figure 4.  Violence detection results 

B. Experimental results and analysis 

To compare with other violence detection 
techniques and show the efficacy of the suggested 
enhanced modules in the suggested violence 
detection model, we conducted numerous tests in 
this work. The experiments are conducted on three 
datasets (UCF101-24, JHMDB, and VioData). 

1) Experimental result and analysis 

In order to confirm the model's efficacy for 
violence detection, the model put out in this work 
is contrasted with current behavioral detection 
techniques in this section. The following four 
models are chosen for comparison studies: 

a) MPS [21]: this model proposes a new fusion 

strategy that not only fuses the appearance and 

optical flow information of dual-stream networks, 

but also includes a solution to the problem of small 

camera movements. 

b) P3D-CTN [22]: the core idea of this model 

is to use the so-called Pseudo-3D Convolution, 

which is a method that combines 2D spatial 

convolution with 1D temporal convolution. This 

method can effectively extract spatio-temporal 

features from videos without significantly 

increasing the computational complexity. 

c) STEP [23]: this model contains two main 

parts, spatial refinement and temporal expansion. 

Each step in spatial refinement uses the regression 

output of the previous step to improve the quality; 

temporal extension focuses on improving the 

accuracy of action classification through the 

duration of the video clip. 

d) YOWO [10]: this architecture contains two 

branches, one for extracting spatial features of key 

frames and the other for modeling the spatio-

temporal features of video clips consisting of 

previous frames, and finally the features obtained 

from the two branches are fused through the 

attentional mechanism and regressed for 

classification. 

The outcomes of this comparison experiment 

are displayed in the Table Ⅱ: 

TABLE II.  RESULTS OF VIOLENCE DETECTION ACCURACY OF 

DIFFERENT MODELS 

Method 

UCF101-24 JHMDB VioData 

mAP 

MPS 82.4% - 85.3 

P3D-CTN - 84.0% 84.9% 

STEP 83.1% - 86.4% 

YOWO 82.5% 85.7% 88.0% 

ours 89.8% 88.6% 91.8% 

2) Ablation experiments 
In this part, we use a series of ablation 

experiments to assess how various network 
enhancements affect the effectiveness of video 
behavior identification. 

First, we introduce the ASPP model on the 
CSPDarkNet-Tiny backbone network, and next, 
we introduce spatio-temporal depth-separable 
convolution in the I3D network, and further 
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experiments are conducted on the same datasets. 

The experimental results are shown in Table Ⅲ. 

TABLE III.  DETECTION RESULTS WITH EMBEDDED ASPP MODEL AND 

INTRODUCTION OF SPATIO-TEMPORAL DEPTH SEPARABLE CONVOLUTION 

Network 
UCF101-24 JHMDB VioData 

mAP 

Baseline 78.5% 75.3% 78.9% 

CSPDarkNet-

Tiny+ASPP 
80.7% 76.6% 82.0% 

CSPDarkNet-
Tiny+ASPP++I3D(Impr

oved 3D Inc) 

84.8% 80.4% 86.5% 

Table Ⅲ makes it clear that the ASPP paradigm 

was introduced in the CSPDarkNet-Tiny network 
has an improvement of 2.2, 1.3, and 3.1 
percentage points on the three datasets, 
respectively, which indicates that the ASPP model 
is effective in improving the detection accuracy of 
the model . By introducing spatio-temporal depth-
separable convolution to improve the I3D network, 
the model accuracy has an improvement of about 4 
percentage points on all three datasets, indicating 
the effectiveness of spatio-temporal depth-
separable convolution in improving the detection 
accuracy. 

Finally, we embedded the 3D-CBAM attention 
model in the improved I3D network and 
conducted experiments at different embedding 

locations. Table Ⅳ  displays the findings of the 

experiment. 

TABLE IV.  DETECTION RESULTS OF 3D-CBAM ATTENTION MODEL 

EMBEDDED AT DIFFERENT LOCATIONS 

Network 
Embedding 

position 

UCF101-

24 
JHMDB VioData 

mAP 

I3D 

- 84.4% 80.4% 86.5% 

3D Inc_1 86.1% 83.7% 89.0% 

3D Inc_2 86.7% 83.3% 88.3% 

3D Inc_3 85.9% 84.2% 89.6% 

3D 

Inc_1+3D 
Inc_2 

88.2% 87.5% 90.7% 

3D 

Inc_1+3D 
Inc_3 

89.8% 88.6% 91.8% 

3D 

Inc_2+3D 
Inc_3 

88.0% 88.0% 91.4% 

3D 

Inc_1+3D 

Inc_2+3D 

Inc_3 

90.0% 88.7% 92.0% 

As seen in Table 3.3, the addition of the 3D-
CBAM attention model has a corresponding 
improvement on all three datasets, and embedding 
more than one will give a further improvement 
over embedding one. Among them, adding the 
attention model after the first, second and third 3D 
Inc modules performs the best on all three datasets, 
but due to the consideration of the amount of 
parameter computation, adding the 3D-CBAM 
attention after the first and third 3DInc not only 
gives better accuracy, but also keeps the network's 
computation from being overly large to satisfy the 
requirements of video detection. 

VI. CONCLUSIONS 

Aiming at the problem that there is no specific 
violence detection data set in complex surveillance 
scenarios, this paper collects 1,500 violence 
surveillance videos in public data sets, filters and 
extracts the collected videos, and manually marks 
each frame to obtain violence detection data set 
VioData. This work suggests a violence detection 
module based on target identification and 3D 
convolution to deal with opacity and ambiguous 
human targets while detecting violence in intricate 
surveillance situations. This work suggests a 
violence detection module based on target 
detection and 3D convolution for detection in 
complex surveillance scenarios with occlusion 
issues and ambiguous human targets. To enhance 
the capacity to extract human traits from key 
frames, the ASPP module is incorporated into the 
network architecture; the 3D Inc module is 
improved to minimize the amount of network 
parameters; and by embedding the 3D-CBAM 
attention mechanism, the network is able to focus 
more on detecting the key regions of violent 
behavior based on the weight of the feature map. 
In the experimental phase, this paper first verifies 
whether the ASPP model is effective, followed by 
a comparative analysis of the 3D Inc model before 
and after optimization. Prior to model training, 
data augmentation operations are carried out on 
the video data to increase the model's capacity for 
generalization. The experimental results 
demonstrate that the approach suggested in this 
paper can successfully improve the precision of 
violence detection, verify the validity of the 
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datasets and propose benchmarks for researchers 
to improve the enhancement. 

Considering that the experimental data is still 
limited, the scenes in the video data are not rich 
and complex enough, and the crowd violence 
category is not rich enough. In the future, we will 
continue to collect videos and look for datasets 
with more complex and diverse backgrounds that 
contain multiple violence categories. 
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