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Abstract—This paper investigates a grid-representation-

based approach to spatial cognition for intelligent agents, 

aiming to develop an effective neural network model 

that simulates the functions of the olfactory cortex and 

hippocampus for spatial cognition and navigation. 

Despite progress made by existing models in simulating 

biological nervous system functions, issues such as model 

simplification, lack of biological similarity, and practical 

application challenges remain. To address these issues, 

this paper proposes a neural network model that 

integrates grid representation, reinforcement learning, 

and encoding/decoding techniques. The model forms a 

grid representation by simulating the integration of grid 

cells in the medial entorhinal cortex (MEC) with 

perceptual information from the lateral entorhinal 

cortex (LEC), which encodes and retains spatial location 

information. By leveraging attractor networks, 

convolutional neural networks (CNNs), and multilayer 

perceptrons (MLPs), the model achieves the storage of 

spatial location and environmental information, as well 

as the construction of cognitive maps. The experimental 

results show that after using this model, the map 

generation accuracy increased by 15%, the navigation 

accuracy of the agent in complex environments by 20%, 

and the target localization error was reduced to less than 

10%, demonstrating a significant overall performance 

improvement in the grid-based cognitive map 

construction. 

Keywords-Grid representation; Cognitive map ;Infere-

n-ce and generation 

I. INTRODUCTION 

Cognitive map is an internal structure in 
biological brain used to represent and understand 
environmental information, similar to the map in 
the city, which can guide people to find the 
destination [1]. In animal experiments, scientists 
have found that as animals move through their 
environment, the brain builds an internal cognitive 

map through interactions between neurons and 
synaptic adjustments that help animals find food, 
water, and more. The hippocampus and entorhinal 
cortex play key roles in memory [5]. The 
hippocampus is primarily responsible for short-
term memory and spatial navigation, while the 
entorhinal cortex is involved in object recognition 
and spatial memory. Understanding the role of 
these two regions in memory and the relationship 
between them is crucial to understanding how 
brain-like cognitive maps are implemented. 

The aim of the research on the construction of 
cognitive maps using artificial neural networks is 
to design a neural network model to simulate the 
learning and navigation abilities of humans and 
animals in the real world. This model can help 
people better understand how the human brain 
works, but also can provide new ideas and 
methods for the application of machine learning 
and artificial intelligence. 

In the study of spatial cognition of agents, the 
construction method of cognitive map based on 
grid representation is an effective technical means 
[3]. By simulating the functions of the entorhinal 
cortex and hippocampus, agents can obtain spatial 
position, direction and target information, and use 
this information for spatial cognition, such as 
agent navigation and decision making [2]. This 
technique can not only improve the navigation 
accuracy and efficiency of the agent, but also 
enhance the adaptability and robustness of the 
agent in complex environments [4]. At the same 
time, it can be applied to robot navigation, 
autonomous vehicles, virtual reality and 
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augmented reality and other fi-elds to improve the 
intelligence level and adaptability of these systems. 

II. TYPE STYLE AND FONTS 

A. VAE network 

VAE works by sampling the potential space 
and then using a decoder to convert the sampled 
potential vector into a new data sample. Since the 
VAE's encoder maps the raw data onto a Gaussian 
distribution in the potential space, the potential 
vector can be obtained by sampling that Gaussian 
distribution. The sampled potential vector is then 
decoded to generate new data similar to the 
original data distribution. 

One advantage of VAE in terms of 
augmentation of generated data is that it can 
control the degree of variation of generated data. 
By manipulating dimensions in different directions 
in the underlying space, selective changes can be 
made to t-he generated data. For example, you can 
interpolate or scale specific dimensions to generate 
data with specific properties or degrees of 
variation. 

It is important to note that when applying VAE 
for data augmentation, it is necessary to ensure 
that the new data generated is similar to the 
distribution of the original data set, which can be 
achieved through the objective function when 
training the VAE model. VAE models are often 
trained with KL divergence of the underlying 
vector to minimize reconstruction errors, which 
ensures that the new data generated is similar to 
the original data set distribution, thus guaranteeing 
the quality of the new data generated 

B. Reinforcement learning and agent cognition 

The agent spatial cognition methods based on 
reinforcement learning usually employ end-to-end 
training, where action selection and path planning 
are performed directly from raw sensor readings 
[4]. Although this method can feed both dynamic 
and static obstacles into the network through a 
single frame, it is insufficient in the processing of 
interactive information. In order to solve this 
problem, some researchers use the received signal 
strength to define the return value and adopt Q 

learning method to complete path planning, but 
this method is not suitable for uncertain 
environments with a lot of dynamic obstacles, and 
the model is difficult to be transferred to the actual 
environment. Some researchers have trained 
UAVs by using Soft Actor-Critic (SAC) algorithm 
to perform autonomous obstacle avoidance in 
continuous action space using only image data, but 
the model has poor generalization ability and is 
difficult to adapt to the new environment [6]. This 
paper comprehensively considers the problem of 
multiple obstacles in complex and unfamiliar 
scenes, processes data through the method of 
simulated cognitive neuroscience, and further 
trains the representation vector obtained by grid 
representation to obtain the current position signal 
and target position signal of the cognitive map as 
the input of reinforcement learning network, 
optimizes the action selection of the agent, and 
improves the generalization ability of the model as 
a whole [7]. 

III. NETWORK MODEL 

A. Grid Representation 

The grid representation model is a two-branch 
fusion model (as shown in Figure 1). Branch one 
extracts the key information of the current 
environment from the environment through the 
attractor network to simulate the visual 
information perceived by animals in the 
environment, and then extracts its features through 
the deformable convolution layer. Branch two 
obtains grid cells through the exploration of the 
environment by agents. Grid cells are believed to 
code the relatively unchanged spatial structure 
information that can span different environments 
and are input into the Hebbian competitive neural 
network for competition among position cells [8]. 
After multiple competitions, key position 
information is obtained, and then feature 
extraction is carried out through the deforming 
convolution layer. Feature fusion is performed on 
the features extracted from the double branches, 
and the final output is a kind of representation 
vector after fusion, which is called grid 
representation. 
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Figure 1.  Grid representation model 

The grid representation network model is 
mainly divided into the following parts: 

 Visual perception branch: It is used to 
extract key information about the 
environment, similar to the visual 
information perceived by animals. 

 Spatial coding branch: It is used to encode 
location information in the environment to 
obtain grid cells and location cells. 

 Double-branch feature fusion: the features 
obtained from the visual perception branch 
and the spatial coding branch are fused to 
obtain the spliced feature vector. 

 MLP training: Input the spliced feature 
vector into the multi-layer perceptron (MLP) 
for training, and finally output grid 
expression G. 

The following is a step-by-step explanation of 
the composition and function of each part. 

Branch of Visual Perception (Branch 1) ，the 

branch of visual perception extracts key 
information about the current environment from 
the environment through the attractor network [9]. 
This branch uses the deformable convolution layer 
1 to perform feature extraction on the extracted 
information to capture important visual features in 
the environment. The features obtained through 
this branch can capture the important visual 
features in the environment and provide the basis 
for the subsequent feature fusion. 

Spatial Coding Branch (Branch 2) ，the spatial 

coding branch explores the environment through 
agents and obtains grid cells. Grid cells are 

thought to encode information about spatial 
structures that can span different environments and 
remain relatively unchanged. The grid cells are 
entered into the position cells in the Hebb 
competitive neural network to make them compete 
with each other. After many competitions, get key 
position information. Then, the deformation 
convolution layer 2 is used to extract the features 
of these position information. The features 
obtained through this branch can capture the 
spatial structure information of the environment 
and provide the basis for the subsequent feature 
fusion. 

Two-branch feature fusion is after obtaining the 
features of deformable convolution layer 1 and 
deformable convolution layer 2, double-branch 
feature fusion is carried out. The features obtained 
from the two branches are concatenated into a 
feature vector. This feature vector reflects key 
visual and spatial structure information in the 
environment, providing more comprehensive 
features for subsequent training. 

MLP training is fusion vectors after processing 
are then processed by the multi-layer perceptron 
(MLP), and the vectors output by the activation 
function are linearly weighted and summed to 
obtain the final grid representation. The output 
result of this output layer is a high-dimensional 
vector representation G, reflecting the distribution 
and position information of the input information 
in space, as well as additional information after 
MLP processing. This output can be used as input 
to VAE (variational autoencoder) for further 
processing and encoding through inference models. 
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B. Inference and generation 

The output of grid representation networks can 
be used as input to variational autoencoders (VAE). 
VAE is a generative model capable of learning 
potential representations of data and generating 
new data samples. 

After the grid expression output G at step=t and 
the output gt-1 of the generated model at step= T-1 
at the previous moment are combined as the input 
of VAE, the inference model of VAE will receive 
these two vectors as input (as shown in Figure 2) 
[10]. 

 
Figure 2.  Inference model 

Inference models map the input vectors G and 
gt-1 into the potential space using a nonlinear 
transformation function, a process that can usually 
be implemented by one or more neural network 
layers. The function learns a mapping relationship 
from the input space to the potential space so that 
the distribution of the input data in this space is as 
close as possible to its true potential distribution. 
In the potential space, the distribution of the data 
is modeled as a probability distribution, which is 
usually a multidimensional Gaussian distribution. 

After obtaining a representation of the potential 
space, the inference model calculates the mean and 
variance of the potential variables. These 
parameters describe the distribution of potential 
Spaces and are used to generate new data samples 
in the decoder. This process is usually 
implemented using a regularization term, such as 
KL divergence or ELBO (Lower bound of 
evidence). The function of the regularization term 
is to make the potential distribution learned by the 
model as close as possible to a prior distribution, 
such as a Gaussian distribution.  
In order to ensure that the generated distribution 
can be as close as possible to the true posterior 
distribution of the task, we construct the 
variational lower as shown in equation (1), the 

Loss_Critic in the loss (2) function serves as a 
constraint for generating latent variables. 
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Then sample a potential variable from the 
learned potential distribution. This latent variable 
mimics the place cell, or p, in the hippocampus, 
which represents spatial cognitive information. 
The sampling process is usually implemented 
using a reparameterization trick, by randomly 
sampling a sample from a potential distribution 
and then mapping this sample into the output 
space via a nonlinear transformation function. 

In order to ensure the accuracy of the trained 
state distribution, a generation model is 
constructed. The input p is sampled from the 
posterior distribution q(p|g) obtained from the 
Encoder, and the output is the cognitive map 
reconstructed state feature g corresponding to the 
current p. We hope that the specific characteristics 
of the original state g can be restored according to 
the sampled p, and the accuracy of the generated p 
can be measured as a constraint term for 
generating potential variables. 

In order to make the generated distribution as 
close as possible to the true posterior distribution 
of the state space, we construct the variational 
lower bound as in equation (3): 

s~q ( | )[ [ ( , ) ( ( | ) || ( ))]]
sT Z p g s KL s sELBO E E R T z D q z g p z

   

In the decoding process, the output we want to 
get is the cognitive map g of the current moment. 
To achieve this, we need to add an output layer to 
the last layer of the decoder, which should be the 
same size as the dimensions of the cognitive map g. 
In the output layer, we can use nonlinear activation 
functions such as sigmoid function or softmax 
function to map the neuron's output to the range of 
[0,1] to get the final cognitive map g (as shown in 
Figure 3). 
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Figure 3.  Generating the model 

C. Cognitive map construction 

The cognitive map construction network is 
divided into four parts: grid representation, 
inference and generation, target signal acquisition, 
and cognitive map construction. 

Grid expression: In this part, the sensory 
perception in the memory is extracted through the 
attractor network, and the information obtained by 
grid discharge is used as input, feature extraction 
is carried out through convolution, and then 
feature fusion is carried out through MLP to obtain 
the fused feature vector as grid expression. 

Inference and generation: In this part, the grid 
expression output and the output of the previous 

generation are taken as inputs together, and the 
input data is mapped to the potential space through 
inference to obtain the mean and variance of the 
potential variable, and then the distribution of the 
potential variable p. p sampled from the posterior 
distribution q(p|g) obtained by inference is taken 
as the input of generation, and after decoding by 
generation, g_t is output as the cognitive map 
reconstruction state feature corresponding to the 
current p. 

Spatial cognitive information p is the core 
inferential information of cognitive map, and also 
an important basis for constructing cognitive map. 
Latent variables can be decoded to generate new 
cognitive maps based on these features. 

Target signal acquisition: In order to extract 
walks from the environment and map them to the 
potential space as the inference input, the potential 
distribution p2 of the quadruple [s, a, r, s'] is 
obtained. The potential distribution contains the 
core feature distribution of the quadruple, which is 
goal code, that is, the target signal (as shown in 
Figure 4). 

 
Figure 4.  Overall model 

IV. EXPERIMENT 

Before you begin to format your paper, first 
write and save the content as a separate text file. 
Keep your text and graphic files separate until 
after the text has been formatted and styled. Do 
not use hard tabs, and limit use of hard returns to 
only one return at the end of a paragraph. Do not 

add any kind of pagination anywhere in the paper. 
Do not number text heads-the template will do that 
for you. 

Finally, complete content and organizational 
editing before formatting. Please take note of the 
following items when proofreading spelling and 
grammar: 
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A. Data 

In this experiment, a public data set containing 
road scenes is selected, which contains pictures of 
various road scenes and corresponding target 
annotation information, including vehicles, 
pedestrians and other targets. Such a data set can 
provide a variety of road environments and help 
evaluate the model's performance in different 
scenarios. 

B. Navigation and obstacle avoidance performanc

-e evaluation experiment 

To verify the effectiveness of the cognitive map 
model in navigation and obstacle avoidance, we 
construct a virtual maze environment. The maze 
scene is a two-dimensional plane containing 
several static obstacles. The test object (the 
simulated agent) navigates the environment with 
the goal of getting from the start to the end while 
avoiding all obstacles. 

Obstacle distribution: Obstacles are static and 
randomly distributed in different locations in the 
maze. Obstacles vary in shape and size to increase 
navigation difficulty and simulate diversity in a 
real environment. 

Target point setting: set the starting point and 
end point of the maze, and require the tested object 
to reach the end point as quickly as possible 
without colliding with obstacles. 

To visualize and analyze the performance of 
cognitive map models in navigation, we generate 
attention heat maps. The heat map shows the 
location and frequency distribution of the tested 
object throughout the maze. 

 
Figure 5.  Location attention heat map 

Through the heat map in the Figure 5, we can 
visually observe the position frequency 

distribution of the tested object in the maze. This 
heat map is generated by counting the occurrence 
frequency of the measured object in each spatial 
position (x, y). The darker the color, the higher the 
activity frequency of the measured object in this 
area; conversely, the lighter the color, the lower 
the activity frequency. 

 High frequency areas: 
In the heat map, certain areas (such as the (6, 0) 

and (0, 7) positions in the image) that show darker 
colors are hotspots of attention. This indicates that 
the subject stays in these positions for a long time 
or passes several times. The reason may be that 
these areas are critical turning points, bottleneck 
locations in the maze, or more complex path 
selection areas. These hot spots may have an 
important impact on navigation decisions, and the 
model may have performed more calculations or 
adjustments at these locations to choose the best 
path or avoid obstacles. 

 Low frequency region: 
Lighter colored areas indicate places where the 

subject passes less or spends less time. It may be 
because the path selection in these areas is 
relatively simple, or these areas are the edge of the 
maze or dead end, so the subject does not need to 
do too much stop in these areas. 

The low-frequency activity in these regions 
shows how confident and efficient the model is on 
these partial paths, able to pass quickly. 

From the distribution of the overall heat map, it 
can be seen that the behavior of the tested object is 
more concentrated in some specific areas, which 
may reflect the effectiveness of the path selection 
and obstacle avoidance strategy of the cognitive 
map model in this area. For example, in regions 
with more complex paths (such as the center or 
turning point of a maze), the color of the heat map 
changes more dramatically, reflecting that the 
model makes more path selection judgments in 
these regions. 

To measure the accuracy of the model 
prediction, a heat map of the coincidence degree 
between the model prediction path and the actual 
navigation path is generated (as shown in Figure 
6). 
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Figure 6.  Trajectory comparison diagram 

 Method: The predicted path of the model 
was compared with the actual path, and the 
areas with high coincidence between the 
two were marked. 

 Objective: To analyze the predictive ability 
and execution ability of the model in 
different environments, and determine the 
difference between the path planning of the 
model and the actual execution. 

C. Contrast experiment 

In order to demonstrate the advantages of the 
cognitive map construction model based on grid 
representation design in the environment 
construction task, we compared the object 
recognition performance of different object 
detection models on the public data set and the 
cognitive map image generated by the cognitive 
map construction model. Common target detection 
models such as YOLOv5, Faster R-CNN and SSD 
were selected and deployed, trained and tested in a 
rigorous experimental environment to ensure the 
accuracy and reliability of the evaluation results. 
By comparing and analyzing the performance of 
the model in different scenarios, the purpose is to 
verify the data enhancement effect of the cognitive 
map building model, and explore its advantages 
and limitations in practical application. 

In order to conduct comprehensive and 
effective data comparison, we choose the 
following common object detection models as data 
comparison models: 

 YOLOv5: As a fast and accurate target 
detection model, YOLOv5 shows good 
performance and low computing cost. 

 Faster R-CNN: Faster R-CNN is one of the 
classic target detection models in the 

industry, with high accuracy and strong 
robustness. 

 SSD: SSD (Single Shot MultiBox Detector) 
is a target detection model that can detect 
multiple frames in a single time, with fast 
detection speed and high accuracy. 

 DETR: DETR is an innovative target 
detection model with unique performance 
and advantages in the field of target 
detection. 

 RT-DETR: RT-DETR is also an excellent 
target detection model with good 
adaptability to various scenarios. 

These commonly used target detection models 
are selected as data comparison models, and each 
target detection model is deployed in the 
environment for training and testing to ensure the 
accuracy of the model effect. 

This paper recorded average accuracy (mAP), 
accuracy (P), recall rate (R), F1 score and average 
accuracy (APcar) for each model. 

In order to show the performance of each 
model on different data sets more intuitively, line 
charts for each index are drawn. Figure8 shows the 
comparison of the performance indicators of the 
target detection model under different data sets, 
and Figure9 shows the comparison of the 
execution rate of the target detection model under 
different data sets. 

Finally, complete content and organizational 
editing before formatting. Please take note of the 
following items when proofreading spelling and 
grammar (Figure 7 and Figure 8): 

 
Figure 7.  Display of target detection results 
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Figure 8.  Execution rate diagram of target detection model 

V. CONCLUSIONS 

Based on the grid representation method, this 
paper discusses the performance of the agent in 
spatial cognition and navigation planning. By 
building a deep learning model that includes a grid 
representation generator, an encoder, a decoder, an 
inference model (including the hidden variable p), 
and a Goal Code generator, we have succeeded in 
providing the agent with a whole-process solution 
from environment awareness to target location to 
path planning. 

Experimental results show that the model 
performs well in navigation and path planning 
tasks. Grid representation not only provides the 
agent with clear spatial structure information, but 
also enhances its ability to understand the layout 
of the environment. The introduction of hidden 
variable p enables the model to capture the main 
distribution of the environment, and improves the 
environmental adaptability and continuous 
decision-making ability of the model. The 
generation of Goal Code provides the agent with 
clear target guidance, which helps to generate 
accurate and efficient navigation path. 

By combining deep learning techniques, we 
give the agent powerful spatial perception and 
decision-making capabilities, enabling it to 
navigate autonomously and complete tasks in 
complex environments. This not only provides 
strong support for the development of intelligent 

robots, autonomous driving and other fields, but 
also provides new ideas and methods for the 
research of future agents in the field of spatial 
cognition. 

In the future, we will continue to optimize the 
model architecture and parameter Settings to 
improve the performance and generalization of the 
model. At the same time, we will also explore 
more advanced technologies and methods to 
promote the research and application of agents in 
the field of spatial cognition. We believe that in 
the near future, agents based on grid expression 
will be able to show their strong potential and 
value in more fields.  
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