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Abstract—This paper introduces the Variance Reduction 

Proximal Stochastic Newton Algorithm (SNVR) for 

solving composite optimization problems in machine 

learning, specifically minimizing F(w) + Ω(w), where F is 

a smooth convex function and Ω is a non-smooth convex 

regularizer. SNVR combines variance reduction 

techniques with the proximal Newton method to achieve 

faster convergence while handling non-smooth 

regularizers. Theoretical analysis establishes that SNVR 

achieves linear convergence under standard assumptions, 

outperforming existing methods in terms of iteration 

complexity. Experimental results on the "heart" dataset 

(N=600, d=13) demonstrate SNVR's superior 

performance: Convergence speed: SNVR reaches 

optimal solution in 5 iterations, compared to 14 for 

ProxSVRG, and >20 for proxSGD and ProxGD. 

Solution quality: SNVR achieves an optimal objective 

function value of 0.1919, matching ProxSVRG, and 

outperforming proxSGD (0.1940) and ProxGD (0.2148). 

Efficiency: SNVR shows a 10.5% reduction in objective 

function value within the first two iterations. These 

results indicate that SNVR offers significant 

improvements in both convergence speed (180-300% 

faster) and solution quality (up to 11.9% better) 

compared to existing methods, making it a valuable tool 

for large-scale machine learning optimization tasks. 
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I. INTRODUCTION 

In recent years, the field of machine learning 
has seen a surge in the importance of composite 
optimization problems. These problems, 
characterized by the sum of a smooth convex 
function and a non-smooth convex regularizer, 
arise in various applications ranging from 

regression models to classification tasks. The 
challenges in solving such problems are twofold. 
First, the large number of samples leads to high 
computational costs in calculating function values 
and gradients. Second, the optimization often 
occurs in high-dimensional spaces, further 
complicating the process [1-3]. 

Traditional approaches to solving these 
problems have evolved significantly over time, 
from full gradient descent methods to more 
sophisticated stochastic and variance-reduced 
algorithms [4-5]. Despite these advancements, 
there remains a need for algorithms that can more 
effectively balance computational efficiency with 
convergence speed, especially in the context of 
large-scale machine learning problems with non-
smooth regularizers [6-7]. 

In this paper, we introduce a novel algorithm : 
the Variance Reduction Proximal Stochastic 
Newton Algorithm (SNVR). SNVR combines the 
strengths of variance reduction techniques with the 
proximal Newton method, offering a powerful 
new approach to solving composite optimization 
problems. Our algorithm builds upon the ideas of 
stochastic average gradient methods but 
incorporates them into a proximal Newton 
framework. 

The SNVR algorithm offers several key 
advantages: 1. It leverages the fast convergence 
properties of Newton-type methods. 2. It 
incorporates variance reduction techniques to 
mitigate the noise inherent in stochastic methods. 
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3. It maintains the ability to handle non-smooth 
regularizers through the use of proximal operators. 

The remainder of this paper is organized as 
follows: Section 2 presents a literature review of 
recent advancements in optimization algorithms 
for machine learning. Section 3 describes the 
SNVR algorithm in detail. Section 4 presents the 
theoretical analysis and convergence properties of 
SNVR. Section 5 provides numerical results 
demonstrating the algorithm's performance on 
real-world datasets. Finally, Section 6 concludes 
the paper and discusses potential future research 
directions. 

II. LITERATURE RESEARCH 

Recent years have seen significant 
advancements in optimization algorithms for 
large-scale machine learning problems. This 
section provides an overview of key developments 
within the last five years, focusing on stochastic 
methods, variance reduction techniques, and quasi-
Newton approaches. 

Stochastic Quasi-Newton Methods, Guo et al. 
(2023) [8] provided a comprehensive overview of 
stochastic quasi-Newton methods for large-scale 
machine learning. Their work highlighted the 
importance of balancing convergence speed, 
computational cost, and memory usage. The 
authors emphasized the need for further research 
into developing more efficient and scalable 
stochastic quasi-Newton methods, particularly for 
high-dimensional problems. Convergence 
Analysis for Non - strongly Convex Functions, 
Zhang et al. (2020) [9] made significant progress 
in understanding the convergence properties of 
Stochastic Gradient Descent (SGD) for non-
strongly convex smooth optimization problems. 
Their novel analysis proved that SGD can achieve 
linear convergence under specific conditions, 
establishing a connection between the smoothness 
of the objective function and the convergence rate. 
This work provided valuable insights into the 
behavior of SGD in a broader class of optimization 
problems. 

Variance Reduction Techniques Variance 
reduction has emerged as a crucial approach for 
improving the efficiency of stochastic optimization 
methods. Sinha et al. (2021) [10] conducted a 

comprehensive review of various variance 
reduction techniques used in deep learning. Their 
work discussed the strengths and weaknesses of 
each method, including their applicability, 
computational complexity, and impact on 
convergence. This review serves as a valuable 
guide for researchers and practitioners in selecting 
appropriate variance reduction techniques for 
specific deep learning tasks. Asynchronous 
Parallel Methods, As the scale of machine learning 
problems continues to grow, asynchronous parallel 
optimization methods have gained attention. 
Qianqian et al. (2021) [11] proposed an 
asynchronous parallel stochastic quasi-Newton 
method that combines the benefits of quasi-
Newton updates with asynchronous parallel 
processing. Their approach leverages a novel 
communication mechanism to ensure consistency 
and stability in parameter updates across multiple 
processors, resulting in significant speedups in 
training times compared to traditional methods. 

Block Coordinate Descent with Variance 
Reduction, Gower et al. (2018) [12] introduced a 
new variance reduction technique for Stochastic 
Block Coordinate Descent (SBCD) methods. Their 
approach significantly reduces the variance in 
gradient estimates, achieving convergence rates 
comparable to full gradient methods. Y. Chen et al. 
[13] addresses the challenge of optimizing non-
convex functions, which frequently arise in 
machine learning tasks such as deep learning. This 
work offers substantial improvements in efficiency 
and scalability for large-scale optimization 
problems, particularly those with block structure. 

These recent advancements in optimization 
algorithms for machine learning have paved the 
way for more efficient and scalable methods. 
However, there is still room for improvement, 
particularly in developing algorithms that can 
effectively handle non-smooth regularizers while 
maintaining fast convergence rates. Our proposed 
Variance Reduction Proximal Stochastic Newton 
Algorithm (SNVR) aims to address these 
challenges by combining the strengths of variance 
reduction techniques with the proximal Newton 
method. 
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III. MATHEMATICAL MODEL 

A. Problem Formulation 

These papers consider the following composite 
optimization problem: 


1

min ( ) ( ) ( ) ( )
d

N

iw i

F w w w wf
 

    

( )f x is a smooth convex function composed of 

  individual smooth convex functions 

( )( 1,2,..., )if w i N  

 ( )w  is a convex, potentially non-smooth 
regularization function. 

 dw
 is the parameter vector to be optimized.  

This formulation encompasses a wide range of 
machine learning problems, including regularized 
least squares, logistic regression, and support 
vector machines. 

B. Assumptions 

1) The component functions
(.)if  are strongly 

convex, and their gradient functions satisfy the L-

Lipschitz condition. 

2) The Hessian matrix 
2 ( )if w

 is bounded for 

any non-empty subset S. 

 ( ) ( ) ( ) ( )T

i i i

v w

f v f w f w v w

v w

 

   

 

 

 

Here 0  and 0L   are constants. 

The Hessian matrix 
2 ( )if w

 is bounded for any 
non-empty subset S. Specifically, there exist 

constants 1  and 2  such that, 


2

1 2( )d i dI f w I    

C. Key Lemmas 

Lemma 3.1 

Let    be the optimal solution of the problem (1). 
Then. 



2

* 1 *

( ) ( )

4 [ ( ) ( ) ( ) ( )]

k

k k

F w F w

L w w w w   

 

   


Lemma 3.2 

Let ( ) ( ) ( )w F w w   , and assume that ( )F w  

is L-Lipschitz continuous. Let
1

1 ( )H

k k kw prox w H g  

  
, where 

( )kg F w
, 

  is the step size, and 0 1/ L  . Then, 


1
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1
            ( , )
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k k k k k
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w w g H w w

w w g

 



 



  
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Where, 


1 1

1

( , ) ( ) ( )

                     ( ) ( )

k k k k

T

k k k

w w w w

w w w

 


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D. Main Convergence Theorem: 

Let * arg min ( )ww w
, 

2

1 20 16    , and 

assume that the assumptions in Section 3 hold. 

Then, 


*

1 * *[ ( ) ( )] [ ( ) ( )]k kw w w w         
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* 2

1

7
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
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Let: 
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Then by Lemma 3.1 we can obtain: 
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
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1( , ) 0k kw w  , we have: 
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By strong convexity, we know: 


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  , This work have 
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1

7
(1 ) 1
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
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SNVR algorithm converges linearly. 

IV. ALGORITHM IMPLEMENTATION 

The Variance Reduction Proximal Stochastic 
Newton Algorithm (SNVR) represents a 
sophisticated approach to solving large-scale 
machine learning optimization problems. At its 
core, SNVR combines the strengths of variance 
reduction techniques with the power of Newton's 
method, all while maintaining the ability to handle 
non-smooth regularizers through proximal 
operations. 

The algorithm begins with an initialization 
phase, where an initial point is chosen, and key 

parameters such as batch size, convergence 
threshold, and step size are set. A crucial step in 
this phase is the computation and storage of the 
full gradient and the inverse of the Hessian matrix 
at the initial point. This forms the foundation for 
the subsequent iterative process. 

The heart of SNVR lies in its main loop, where 
the algorithm iteratively refines the solution until 
convergence. In each iteration, a subset of the data 
is randomly selected, enabling the algorithm to 
work efficiently with large datasets. This 
stochastic approach is key to the algorithm's 
scalability. 

A distinguishing feature of SNVR is its use of a 
variance-reduced gradient estimate. By 
maintaining a memory of previously computed 
gradients and updating only a subset in each 
iteration, SNVR achieves lower variance in its 
gradient estimates compared to standard stochastic 
gradient methods. This variance reduction 
technique is crucial for the algorithm's stability 
and fast convergence. 

Algorithm 1 Stochastic Newton Variance 
Reduced (SNVR) Algorithm 

Require: Initial point   , batch size b, tolerance ϵ, 

learning rate α, maximum iterations M 

Ensure: Optimal solution    

1: Initialize k = 0 

2: Calculate and store the gradients  

1 0 2 0 0( ), ( ),..., ( )Nf w f w f w    

3:  Compute the Hessian matrix    at w0 and its 

inverse     

4:  Calculate 
1

1 0 0( ( ))Hw prox w H f w      
5:  Set k = 1 

6: while 1| ( ) ( ) |k kw w   | do 

7: Randomly select a subset Sk of size b from the set 

{1, 2, ... , N } 

8: Compute the gradients ( )i kf w   for i ∈ Sk  

9: Calculate 
1 1 1 1( ) ( ) ( )k s k s k kv f w f w f w      

10: Compute the Hessian matrix    at kw    and its 
inverse

1H 
 

11: Calculate 
1 1

1 1( )H

k k k kw prox w H v   

     

12: Update the gradients 1( )i kf w   for the 
updated subset kS   

13: Set k = k + 1 

14: end while  

15:  return 1kw    

The algorithm then computes the Hessian 
matrix at the current point, incorporating second-
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order information into the optimization process. 
This Newton-type update allows SNVR to make 
more informed steps towards the optimal solution, 
particularly beneficial in regions where the 
objective function has high curvature. 

The parameter update step employs a proximal 
operator, which is essential for handling the non-
smooth regularizer term in the objective function. 
This operator allows SNVR to effectively navigate 
the optimization landscape even in the presence of 
non-differentiable components. 

After each update, the algorithm checks for 
convergence based on the change in the parameter 
values. This process continues until the algorithm 
converges or reaches a maximum number of 
iterations. 

The SNVR algorithm's unique combination of 
variance reduction, Newton-type updates, and 
proximal operations positions it as a powerful tool 
for tackling complex optimization problems in 
machine learning. 

V. EXPERIMENTAL PROCESS AND RESULTS 

To validate the theoretical properties and assess 
the practical performance of the SNVR algorithm, 
we conducted a comprehensive set of numerical 
experiments. Our study focused on a regularized 
least squares problem, a fundamental task in 
machine learning with wide-ranging applications. 

The experiment utilized the "Heart" dataset, a 
real-world dataset consisting of 600 samples, each 
with 13 features. This dataset, while modest in size, 
presents a challenging optimization problem due 
to its high-dimensional feature space and the 
potential for complex relationships between 
features. 

In our experimental setup, we carefully tuned 
the SNVR algorithm's parameters to balance 
performance and computational efficiency. The 
regularization parameter was set to a small value 

(    ) to prevent overfitting while still allowing 
the model to capture the underlying patterns in the 
data. We limited the maximum number of 
iterations to 20, which proved more than sufficient 
for SNVR to converge to an optimal solution. 

To provide a comprehensive evaluation, we 
compared SNVR against three state-of-the-art 
optimization algorithms: Proximal Gradient 
Descent (ProxGD), Proximal Stochastic Gradient 
Descent (proxSGD), and Proximal Stochastic 
Variance Reduced Gradient (ProxSVRG). This 
selection of algorithms represents a spectrum of 
approaches, from deterministic to stochastic, and 
from first-order to variance-reduced methods. 

The results of our experiments were striking. 
SNVR demonstrated remarkable convergence 
behavior, with the objective function value 
decreasing rapidly in the initial iterations and then 
fine-tuning to reach the optimal value. The 
algorithm achieved convergence in just 5 iterations, 
significantly outpacing its competitors. 

A detailed analysis of the convergence 
trajectory revealed that SNVR achieved a 
substantial 10.5% reduction in the objective 
function value within the first two iterations. This 
rapid initial progress highlights the algorithm's 
ability to quickly identify promising directions in 
the parameter space. The subsequent iterations saw 
a more gradual improvement, with the algorithm 
refining its solution to achieve an additional 0.2% 
reduction, ultimately reaching the optimal value of 
0.1919. 

When compared to other methods, SNVR's 
superior performance became even more evident. 
ProxSVRG, the next best performer, required 14 
iterations to reach the same optimal value, taking 
180% more iterations than SNVR. The first-order 
methods, ProxSGD and ProxGD, both exhausted 
the maximum allowed iterations (20) without 
achieving the optimal solution quality of SNVR. 

The comparative analysis also revealed 
interesting insights into the trade-offs between 
convergence speed and solution quality. While 
ProxSVRG matched SNVR in terms of the final 
objective function value, it required significantly 
more iterations to do so. On the other hand, 
proxSGD and ProxGD demonstrated a clear trade-
off between speed and accuracy, with ProxGD, in 
particular, showing suboptimal performance in 
both aspects. 

These results underline the effectiveness of 
SNVR in balancing rapid convergence with high-
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quality solutions. The algorithm's ability to 
achieve optimal results in fewer iterations not only 
demonstrates its theoretical strengths but also 
highlights its practical value for large-scale 
machine learning tasks where computational 
efficiency is crucial. 

The experimental outcomes provide strong 
empirical support for the theoretical properties of 
SNVR and suggest its potential as a powerful 
optimization tool for a wide range of machine 
learning applications. The algorithm's performance 
on the "Heart" dataset indicates that it could be 
particularly beneficial in scenarios requiring rapid, 
high-quality optimization, such as real-time 
machine learning systems or large-scale data 
analysis in resource-constrained environments. 

A. Analysis of Results 

The detailed experimental process and 
intermediate results provide several insights: 

1) Convergence Efficiency: As illustrated in 
Figure 1. SNVR consistently outperforms other 
methods in terms of convergence speed, reaching 
near-optimal values in fewer iterations. This is 
particularly evident in the objective function value 
chart, where SNVR's curve shows the steepest 
decline. 

2) Optimization-Generalization Trade-off: 
Figure 2. the training loss vs. test accuracy graph 
for SNVR demonstrates its ability to effectively 
balance between fitting the training data and 
generalizing to unseen data. This suggests that 
SNVR is less prone to overfitting compared to 
methods that might continue to decrease training 
loss without improving test accuracy. 

3) Stability: The consistency of SNVR's 
performance across multiple runs (as indicated by 
the small variance in results) suggests that it is 
more robust to initial conditions and stochastic 
fluctuations compared to other methods. 

4) Computational Considerations (Figure 3.): 
While SNVR has a higher per-iteration 
computational cost due to its use of second-order 
information, its rapid convergence often results in 
lower overall computational time to reach the 
optimal solution. This trade-off is particularly 
beneficial for problems where the cost of data 

access or function evaluations is high relative to 
the cost of algorithm computations. 

 
Figure 1. Convergence analysis for various algorithms 

 

Figure 2. Training Loss Vs Test accuracy chart for SVNR algorithm. 

 
Figure 3. Computational time comparison for different algorithms. 

These results highlight SNVR's potential as a 
powerful optimization tool for machine learning 
tasks, particularly in scenarios where rapid, high-
quality convergence is crucial. The algorithm's 
ability to efficiently navigate the optimization 
landscape, as evidenced by the intermediate results, 
makes it well-suited for a wide range of 
applications, from real-time learning systems to 
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large-scale data analysis in resource-constrained 
environments. 

 

VI. CONCLUSIONS 

The Variance Reduction Proximal Stochastic 
Newton Algorithm (SNVR) is a novel 
optimization method designed for large-scale 
machine learning applications. By effectively 
combining variance reduction techniques with the 
proximal Newton method, SNVR minimizes 
composite functions consisting of a smooth 
convex component and a non-smooth convex 
regularizer. SNVR achieves linear convergence 
rates, surpassing existing optimization approaches. 
This is particularly beneficial for high-dimensional 
problems and large datasets. Numerical 
experiments on the “heart” dataset consistently 
demonstrate SNVR’s superiority to state-of-the-art 
methods like ProxGD, proxSGD, and ProxSVRG 
in terms of convergence speed and solution quality. 
SNVR offers 180-300% faster convergence over 
existing methods. SNVR’s ability to handle non-
smooth regularizers while maintaining 
computational efficiency makes it a versatile tool 
for various machine learning tasks, ranging from 
regression to complex classification e.g., real-time 
machine learning systems, large-scale data 
analysis in resource-constrained environments. 

Future research directions include exploring 
SNVR’s applications in other domains, evaluating 
its performance on larger scale problems and 
diverse datasets, and investigating potential 
modifications to further enhance its efficiency or 
adaptability. In sum up, the Variance Reduction 
Proximal Stochastic Newton Algorithm is a 
valuable addition to the optimization toolkit for 
large-scale machine learning problems, offering 
significant theoretical guarantees and practical 
benefits. 
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