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Abstract—In this paper, a new model based on the 

combination of improved LSTM and self-attention 

mechanism is studied for the detection of nystagmus 

caused by vestibular illusion in pilots during flight. An 

efficient and robust nystagmus detection method was 

proposed by constructing experimental simulation 

scenarios and collecting and analyzing pilot eye 

movement data. The improved LSTM model enhances 

the ability of capturing the medium and long term 

dependence of the ocular shock sequence by adding a 

gating unit, and the introduction of self-attention 

mechanism further improves the analytical accuracy of 

the model for complex eye movement sequences. The 

experimental results show that the model has excellent 

performance in accuracy, recall rate and F1 score, which 

is significantly better than the traditional model, 

providing a new technical means for the detection of 

vestibular illusion.The LSTM-GRU-Attention model has 

been experimentally verified to perform best in accuracy, 

recall, and F1 score, reaching 095, 0.91, and 0.93 

respectively, indicating that the outperforms the other 

two models in overall classification performance, 

positive sample recognition ability, and balance between 

accuracy and recall. 
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I. INTRODUCTION 

Vestibular system is the main organ of the 
human body to perceive the changes of body 
position and environment, plays a key role in the 
human body's own sense of balance and spatial 
sense, is an important part of the balance system, 
and is closely related to spatial disorientation and 
movement disease. If the vestibular function is 
abnormal, it will directly affect the pilot's 
operation quality and work efficiency, health 
status and flight safety. Therefore, vestibular 
function examination has become an important 

part of the pilot recruitment physical examination 
[1]. In recent years, studies on the interaction 
between eye movement and vestibular system 
function mainly stimulate the vestibular system to 
obtain relevant eye movement, so as to verify the 
close coupling relationship between eye 
movement and vestibular system. Nystagmmus 
one of the most obvious and important signs of 
various vestibular reactions in clinical practice. 

Wang et al. proposed a pupil location and iris 
segmentation method based on the full 
convolutional network, and used the shape and 
structure information of pupil center, iris region 
and its inner and outer boundaries to achieve pupil 
location and iris segmentation at the same time. 
The human eye pupil detection method based on 
deep learning and appearance texture features [3] 
has received more and more attention, and its 
effectiveness and robustness have also promoted 
practical applications related to eye tracking. On 
the other hand, as the amount of data increases, the 
differences between different individuals also 
increase, and the data distribution becomes more 
diverse, which decreases the detection ability 
based on texture features. At the same time, 
massive data requires a lot of manpower to 
manually label. How to design a more robust and 
effective model using a small number of limited 
samples is the main problem to be solved for 
human eye pupil detection based on appearance 
texture features. 

The method based on context information 
mainly uses the eye region and its context face 
structure and texture information to realize the 
accurate positioning of the pupil of the human eye. 
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Based on the idea of coarse to fine, multi-scale 
nonlinear [5] feature mapping is proposed based 
on the supervised descent method [4] to achieve 
accurate pupil detection. Inspired by the face key 
point detection method. A large number of flight 
practice studies have shown that pilots are prone to 
flight illusion during flight, and flight illusion is 
the most representative of Spatial Disorientation 
(SD) and one of the important factors causing 
serious flight accidents [2]. 

The vestibular illusion detection method 
studied in this paper is mainly based on the 
illusion of tilt shape in flight space disorientation, 
which is based on the fact that tilt illusion accounts 
for the largest proportion in flight illusion 
manifestations [7], and the detection of nystagmus 
[6] by computer vision technology is the main 
method of this paper. 

II. TYPE STYLE AND FONTS 

This paper mainly focuses on the application of 
machine learning in vestibular [8] illusion 
detection, focusing on the spatial disorientation 
pilots may encounter during flight, with a special 
focus on tilt illusion. Therefore, the construction of 
experimental simulation scenes, how to induce the 
generation of nystagmus or illusion, and data 
collection and analysis have become the main 
research contents. 

Specifically, the research includes:Simulation 
and data collection of the experimental scene: 
Design the experimental scene of the illusion of 
tilt shape to simulate the possible situation in flight. 
The eye movement data of pilots under different 
conditions are collected and data sets are built for 
training and validation of machine learning models. 

Establishment of vestibular [8] illusion 
detection method: Through machine learning 
technology, the vestibular illusion detection model 
is constructed, mainly focusing on the illusion of 
oblique morphology, and the model will be trained 
based on the rotating motion of various angles and 
directions that the pilot may experience. 

Application of computer vision technology in 
nystagmus detection: The use of computer vision 
technology, with special attention to the 
occurrence of nystagmus, through the analysis and 

processing of video [10] data, improve the 
accuracy of eye tracking, so as to more accurately 
capture the eye movement changes caused by 
vestibular illusion. 

III. NETWORK MODEL 

The overall architecture of the algorithm 
consists of three main parts: eye position 
recognition (RITNet), the Embedding layer, and 
the improved LSTM model combined with 
Transformer self-attention mechanism (Figure 1). 

 
Figure 1.  Network model 

A. Eye Position Recognition (RITNet) 

Accurate recognition of eye position is an 
important prerequisite for detecting vestibular 
illusion, especially when simulating the spatial 
disorientation [9] of pilots in actual flight (such as 
tilt illusion), capturing eye movement data is a key 
link to understand the physiological response of 
pilots. Therefore, it is particularly important to 
choose an efficient and accurate eye tracking 
method. 

In simulated flight environments where pilots 
are confronted with rapidly changing visual and 
spatial cues, tiny movements of the pilot's eyes are 
critical to the creation and response to the illusion. 
In order to detect the pilot's eye movement 
response, this paper collects the pilot's pupil 
movement data with high-precision eye tracking 
equipment, and adopts RITNet model to process 
the data. RITNet can efficiently handle eye-
tracking tasks in complex scenarios such as 
different lighting, occlusion, and pilot blinking, 
ensuring continuity and reliability of pupil position 
information. 
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The core of RITNet is its use of convolutional 
neural networks (CNNS) to extract multiple layers 
of features from input images, combined with 
contextual information to enhance the robustness 
of the model. Specifically, RITNet includes the 
following key steps: 

Pupil detection and iris segmentation: RITNet 
uses a full convolutional network to 
simultaneously locate the pupil center and segment 
the iris region. This process combines information 
about the shape and structure of the pupil and iris 
to pinpoint the location of the pupil. 

Multi-scale feature extraction: The model can 
extract the context information of the area around 
the pupil from different scales. By introducing 
multi-scale convolution kernel, RITNet can 
capture features of different sizes, so as to adapt to 
pupil changes under different conditions. The 
model can recognize the changes of the pilot's eye 
attitude, rotational movement, and pupil changes 
under different lighting conditions during flight. 

Case segmentation: RITNet is based on case 
segmentation technology, which enables it to not 
only accurately detect the eye position of a single 
pilot, but also separate the eye information of 
different individuals in multiple scenarios. This is 
particularly important for the acquisition of eye 
movement data in the experimental scene of multi-
person flight simulator. 

Continuous tracking of time series: By 
processing the input continuous image frames, 
RITNet can generate a continuous sequence of 
pupil positions. This sequence data not only 
reflects the change of pupil position, but also 
provides time information for subsequent 
nystagmus detection. Especially in vestibular 
delusion-induced experiments, the pilot's pupil 
movement can change rapidly, and RITNet can 
ensure that no critical information is lost by 
continuously tracking these changes. 

B. Embedding layer 

In the vestibular illusion detection task, the 
pupil position sequence output by RITNet contains 
rich timing information. However, the length of 
these sequences may vary depending on the pilot's 
experimental process and actual eye movement 

reaction time. In order to be able to convert these 
input data of different lengths into a fixed format 
that the deep learning model can handle, the 
Embedding layer is introduced to play the key role 
of "information compression" and "semantic 
transformation". 

In this paper, the main task of the Embedding 
layer is to convert the continuous pupil position 
information output by RITNet into embedded 
vectors of fixed dimensions. This process is 
similar to the word vector embedding in natural 
language processing, which can compress the 
original position information into a vector space 
with semantic characteristics, which is convenient 
for model processing and understanding. 

Because the pupil position information is 
output in the form of sequence, the reaction time 
of different pilots under different experimental 
conditions may lead to the difference in the length 
of pupil position sequence. The introduction of the 
Embedding layer can effectively solve this 
problem, so that sequences of different lengths can 
be mapped to the same dimension. Through this 
transformation, the subsequent LSTM and 
Transformer layers of the model can efficiently 
process this data without bias due to differences in 
input length. 

The core of the Embedding layer is to map the 
high-dimensional pupil position information 
sequence to the low-dimensional vector space 
while preserving the most important position 
information features in the sequence. Specifically, 
the pupil position sequence output by RITNet is a 
time series containing information about the 
specific position of the pilot's eyes at each point in 
time. The Embedding layer learns the important 
features of the location information sequence and 
converts it into a fixed-length embedding vector. 

C. Improved LSTM model 

The LSTM unit is used to learn long-term 
dependencies in the ocular shock wave sequence 
in the task of prediction. 

The improved LSTM model has two new 
gating units: Gate1 and Gate2(Figure 2). 

Gate1: Control the incoming and outgoing 
information according to the ocular shock vector 
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output on the Embedding layer and the LSTM unit 
status at the last moment. It helps the model better 
understand the influence of historical ocular shock 
states on the current state. 

Gate2: The output of the model is further 
adjusted according to the current LSTM unit status 
and the context information of the ocular shock 
sequence. It enhances the model's understanding 
of the overall context of the ocular shock sequence. 

In the processing of the pilot's ocular shock 
wave sequence, it is a typical time series signal, 
which contains the physiological response of the 
pilot in the face of spatial disorientation. It usually 
exhibits a certain rhythm and reflects the 
collaborative work between the pilot's vestibular 
system and the visual system. Traditional deep 
learning models may not be effective at capturing 
time dependencies in data. The LSTM model, with 
its special "memory unit" design, can well retain 
and utilize the earlier time step information in the 
sequence to deal with long distance dependence, 
which makes it very suitable for processing time 
series data such as eye shock wave. 

In order to accurately predict the ocular shock 
waves of pilots in vestibular illusion (especially tilt 
illusion), the model must have the ability to 
capture long-term dependencies in the sequence 
data. The improved LSTM model proposed in this 
paper has made a key enhancement on the basis of 
the traditional LSTM model, especially 
introducing two gate control units: Gate1 and 
Gate2. These improvements help the model to 
better handle complex sequences of eye tremors 
and improve its ability to predict vestibular 
illusions. 

 
Figure 2.  improved LSTM model 

Gate1 is designed to help the model better 
understand the relationship between the current 

moment and the historical state of the eye shock 
by introducing additional gating units. The core 
function of Gate1 is to dynamically control the 
inflow and outflow of information according to the 
Embedding vector of the pupil position output and 
the previous state of the LSTM unit on the 
embedding layer, so as to determine which 
information should be retained and which 
information should be forgotten. This design 
solves the gradient disappearance problem 
common to LSTM in long series data, ensuring 
that the model can extract useful information from 
distant historical states. 

The introduction of Gate2 further enhances the 
ability of the model to understand the context 
information of the whole ocular shock sequence. 
Gate2 adjusts the output of the model according to 
the current LSTM unit status and context 
information to ensure that the model can capture 
the global dependencies closely related to the 
current prediction task. 

Gate1: This gating unit is used to control the 
inflow and outflow of information, in particular to 
help the model better understand the influence of 
the historical state of the eye shock on the current 
state. Gate1 computes the gating value based on 
the current input (pupil position information 
processed by the Embedding layer) and the LSTM 
unit status at the previous time to determine which 
information should be forgotten and which 
information should be retained (Figure 3). 

 
Figure 3.  Gate1 

The three Gate1 branches are fed into the three 
parallel Gate1 branches through Embedding 
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vectors processed on the embedding layer. Each 
Gate1 branch calculates the similarity score α_(t,i) 
according to formulas (1) and (2), which is used to 
control the filtering of information: 
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The formula for e_(t,i) is as follows (2): 
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α(t,i), based on the similarity of h(t-1) and xi, 
obtained by the softmax function, represents the 
correlation between the hidden state and the 
external input. 

According to α(t,i), each Gate1 branch divides 
the embedded vector using partition Windows of 
different sizes (zj×zj) to capture information at 
different scales. This allows the model to consider 
both global and local features, improving the 
efficiency of information extraction. 

Assume that the input Gate1 is H∈RH×W×
C.The feature map, in the NTH branch of j parallel 
branches, is sized by controlling the multi-scale 
partition window.Divide H into sizes of (zj×zj,C) 
tensor. Represents grid for each non-overlapping 
slice of size zj×zj. This allows larger partitions to 
capture more external input and visual errors, and 
smaller partitions to extract information on finer 
areas to preserve the relationship between them. 

Gate2: The gate control unit further adjusts the 
output of the model based on the LSTM unit status 
at the current moment and the context information 
of the ocular shock sequence. Gate2 enhances the 
model's understanding of the overall context of the 
ocular shock sequence, making the prediction 

result more a ccurate. 

The output from all three Gate1 branches is 
passed into a shared Gate2. 

Gate2, as a motion decision screening gate, 
further screens the output of the model with the 
current LSTM unit state and the context 
information of the ocular shock sequence. Formula 

(3) describes the calculation process of Gate2, 
where g(i,j)m is a vector representing feature 
selection among the aggregation vectors of 
redundant information, external input and ocular 
shock wave sequence information. 
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D. Transformer self-attention mechanism 

Based on the improved LSTM model, the self-
attention mechanism of Transformer is introduced 
(Figure 4). 

The self-attention mechanism generates an 
attention weight matrix by calculating the 
correlation score between any two positions in the 
input sequence, and then weights the input 
sequence. 

This helps the model to capture the long-
distance dependence in the sequence of pupil 
position, and enhances the model's prediction of 
tilt illusion. 

 

Figure 4.  self-attention structure 

IV. EXPERIMENT 

A. Preparation Data 

The experimental data set contains pupil 
position sequence data collected during simulated 
flight missions, captured by high-precision eye 
tracking equipment, and pre-processed steps (such 
as filtering, normalization, interpolation 
processing) to ensure the quality of the data. The 
dataset size covers thousands of samples, each 
containing a continuous sequence of pupil 
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positions over a period of time and their 
corresponding ophthalmogram labels. Before data 
preprocessing can begin, we need to data label the 
raw eye movement data. As shown in Figure 5, the 
slow-phase nystagmus region is marked yellow. 

The marking process is as follows : ① Draw a line 

chart with the above eye movement data. ② Select 

the area where the difference between the 
maximum and minimum values of the ordinate is 
greater than 1 and the slope is slow as slow-phase 
nystagmus, and mark all frames in this area as 1. 
Repeat the above process until all the points 
contained in the slow-phase nystagmus region 
have been correctly labeled, and the remaining 
points are labeled as 0. 

 
Figure 5.  Data tag example 

B. Training process 

Data loading and partitioning: 

The pre-processed data set was divided into 
training set, verification set and test set according 
to the ratio of 7:1.5:1.5. 

 Hyperparameter Settings:Learning rate: The 
initial learning rate is 0.001 and the learning 
rate attenuation strategy is adopted. 

 Batch size: Select the appropriate batch size 
based on the data set and GPU video 
memory size. 

 Training rounds: The initial training rounds 
are set to 50 or 100, and the early stop 
mechanism is used to stop the training in 
advance. 

 Early stop mechanism:When the validation 
set performance does not improve in several 

consecutive rounds, the early stop 
mechanism is triggered to stop the training 
and save the current optimal model. 

C. Evaluation indicators 

 Accuracy: Measures the proportion of 
samples the model correctly classifies. For 
class imbalance problems such as tilt 
illusion detection, the accuracy may be 
affected by a high proportion of negative 
class samples, so the accuracy should be 
evaluated in combination with other 
indicators to obtain a comprehensive 
performance analysis. 

 Recall rate: Measures the ability of the 
model to recognize the tilt illusion, i.e. the 
proportion of true cases (TPS) that are 
correctly identified. In tilt illusion detection 
missions, recall rates are critical because 
undetected illusions can lead to a potential 
risk of pilot illusion. The high recall rate 
indicates that the model has a strong 
sensitivity in detecting the actual illusion, 
which helps to avoid the case of missing 
detection. 

 F1 score: The F1 score is a harmonic 
average of accuracy and recall rates, and is 
particularly suitable for class imbalance 
problems. By considering both the model's 
Precision (that is, the proportion of samples 
that correctly predict a positive class) and 
the recall rate. The introduction of F1 
scores balances the relationship between 
recall and accuracy, ensuring that the model 
does not miss important positive samples 
while maintaining a low false positive rate. 

 ROC curve and AUC value: By plotting the 
ROC curve and calculating the AUC value, 
we can evaluate the performance of the 
model under different thresholds. The value 
of AUC can directly reflect the ability of 
the model to separate the complex ocular 
shock sequences, and provide a strong 
evaluation basis for the vestibular illusion 
detection task. 

D. Experimental results and analysis 

The chart below shows the changes of each 
index of the model under different training rounds. 
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As the training progressed, the model's 
performance continued to improve, especially in 
terms of accuracy, recall and F1 scores, showing 
significant improvements. These charts not only 
intuitively reflect the gradual enhancement of the 
model's ability to identify positive samples, but 
also demonstrate its optimization effect in 
reducing misjudgments. With these results, we 
were able to gain a clearer understanding of the 
performance and potential of the improved LSTM-
GRU-Attention model in the task of ocular shock 
pattern recognition (Figure 6, Figure 7). 

 
Figure 6.  Training indexes of each round of the model 

 
Figure 7.  ROC curve 

These indicators show that with the increase of 
training rounds, the performance of the model is 
gradually improved. Specifically, the accuracy rate 
increased with the increase of training rounds, and 
finally reached 0.945234. The recall rate also 
increased with the increase of training rounds, 
indicating that the model's ability to recognize 
positive examples was gradually enhanced. F1 

scores also increased in most cases with more 
training rounds, reaching a maximum of 0.928573. 
The true positive rate showed that the ability of the 
model to correctly identify positive cases 
increased from 0.769667 to 0.912489. The false-
positive rate indicates that the frequency of the 
model mistakenly identifying negative cases as 
positive cases gradually decreases to 0.054766, 
which shows the optimization effect of the model. 

In conclusion, with the increase of training 
rounds, the LSTM-GRU-Attention waveform 
recognition network has shown better performance 
improvement and optimization in the slow-
direction eye shock waveform recognition task. 

E. Comparative experiment 

This comparison experiment aims to verify the 
performance of the proposed "LSTM-GRU-
Attention" model (hereinafter referred to as "My 
model") on the tilt illusion detection task and 
compare it with existing models. These include the 
"LSTM-Transformer" model, the "LSTM-
Attention" model, and the ARIMA model. 

In order to ensure the comprehensiveness and 
fairness of the comparison experiment, this paper 
selected two representative models to compare 
with the model designed in this paper: 

LSTM-attention model: This model introduces 
the Attention mechanism based on the classical 
LSTM, so that it can weight the important time 
steps in the sequence. Through the attention 
mechanism, the model can dynamically adjust the 
focus, capture the key information in the eye shock 
sequence more effectively, and improve the 
detection ability of tilt illusion. 

ARIMA model: As a traditional time series 
analysis model, ARIMA model models linear time 
series by means of autoregression and moving 
average. Although it performs well when dealing 
with simple sequence data, its performance can be 
limited when faced with complex nonlinear 
nystomograms. Therefore, the introduction of 
ARIMA models helps to demonstrate the 
advantages of deep learning models in the 
processing of complex time series data. 

Experimental results as follow (Figure 8): 
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Figure 8.  Data results of 100 rounds of training for each model 

 Accuracy: The accuracy of LSTM-GRU-
Attention model is the highest, reaching 
0.945234, indicating that this model is 
superior to the other two models in overall 
classification performance. 

 Recall rate: The recall rate of LSTM-GRU-
Attention model is also the highest, which 
is 0.912489, indicating that this model has a 
good performance in identifying positive 
samples. 

 F1 score: LSTM-GRU-Attention model has 
the highest F1 score, reaching 0.928573, 
indicating that the model has achieved a 
good balance between accuracy and recall 
rate. 

True positive rate and false positive rate: 
LSTM-GRU-Attention model has the highest true 
positive rate and relatively low false positive rate, 
which further proves the advantages of this model 
in waveform recognition tasks. 

The LSTM-GRU-Attention model shows 
excellent performance in waveform recognition 
tasks. This is mainly due to the fact that the model 
combines three different network structures, 
LSTM, self-attention and GRU, which can capture 
the long-term dependence relationship of data, and 
improve the recognition ability of the model by 
using the attention mechanism and the gating 
mechanism. In contrast, ARIMA model, as a 
traditional model based on time series analysis, is 
powerless to deal with complex tasks such as 
waveform recognition. Although the LSTM-
Attention model also uses deep learning 
technology, it is still inferior to the LSTM-GRU-
Attention model in some indicators. The 
experimental results show that the LSTM-GRU-

Attention model has achieved the best 
performance in accuracy, recall rate, F1 score, true 
positive rate and false positive rate, and is the 
optimal model in waveform recognition task. 

V. CONCLUSIONS 

In this paper, a detection method based on 
machine learning is proposed for the vestibular 
illusion that pilots may encounter during flight, 
especially the tilt illusion. By constructing 
experimental simulation scenarios and collecting 
eye movement data, a detection model based on 
RITNet, improved LSTM model and Transformer 
self-attention mechanism is designed and 
implemented. In the research process, computer 
vision technology and embedding layer processing 
are used to realize the efficient recognition of 
complex eye movement sequences. 

The experimental results show that the LSTM-
GRU-Attention model proposed in this paper is 
superior to the traditional model in many indexes, 
demonstrating strong detection ability and 
robustness. This suggests that by introducing gated 
units and self-attention mechanisms, features 
related to vestibular illusions can be captured more 
effectively, thereby improving the overall 
performance of the model. Compared with other 
existing methods, this model has excellent 
performance in accuracy rate, recall rate, F1 score 
and so on, and has achieved a good application 
effect.In the future, we will continue to optimize 
this model by collecting more diverse eye 
movement data, covering different flight phases 
and conditions, as well the performance of 
different groups of pilots, to further improve its 
detection accuracy and generalization ability. 
Meanwhile, we will explore the possibility of 
combining deep learning with other technologies 
to develop a more intelligent, efficient, and 
reliable vestibular illusion detection system, 
providing a solid guarantee for flight safety.  
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