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Abstract—Cancer of the lung is a principal cause of 

mortality due to cancer on a global scale. Traditional 

imaging techniques suffer from subjectivity limitations. 

Meanwhile, convolutional neural networks (CNNs) 

within deep learning, though highly effective in image 

classification, still have limitations when dealing with 

complex and data-scarce medical images. To address 

this challenge, this paper proposes a data-efficient image 

Transformer (DeiT) model based on the Transformer 

architecture with a self-attention mechanism, enhanced 

through knowledge distillation. This model can capture 

global information in images and improve the 

classification accuracy of lung cancer images under 

small-sample conditions by leveraging a teacher model. 

Through model training and evaluation, results 

demonstrate that the DeiT model achieves an impressive 

prediction accuracy of 99.96% under small-sample 

medical imaging conditions. This highlights the 

advantages of the Transformer architecture in medical 

image analysis. The findings provide a new perspective 

for early lung cancer detection and underscore the 

powerful performance of the DeiT model in handling 

complex small-sample data conditions. 
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I. INTRODUCTION 

Over the past few years, AI's dramatic 
progression has spurred substantial breakthroughs 
in deep learning (DL), especially in computer 
vision. Convolutional neural networks (CNNs) are 
widely used in image classification and object 
detection. These models have found widespread 
applications in domains like facial recognition and 
autonomous driving, and security surveillance due 
to their powerful feature extraction capabilities. 

These advancements have improved image 
processing efficiency and accelerated the 
development of intelligent healthcare, making 
medical image analysis a key application of deep 
learning [1]. 

In the medical domain, particularly in tumor 
diagnosis and early detection, the analysis of 
medical imaging data poses significant challenges. 
Traditional imaging techniques like X-rays, CT, 
and MRI rely on physicians' expertise. However, 
the vast amount of image data and the complex 
nature of lesion morphology make these methods 
vulnerable to human error, increasing the chances 
of misdiagnosis or missed diagnosis. Lung cancer 
continues to be a leading cause of mortality 
globally, with early detection being essential for 
enhancing survival rates. However, early-stage 
lung cancer presents subtle symptoms, and its 
imaging data is complex, making traditional 
methods insufficient for efficient and accurate 
detection. Pathological image analysis depends on 
manual interpretation by pathologists, but due to 
the intricate details of tissue slices, this process is 
time-consuming and prone to errors, especially 
when detecting subtle cellular changes. 

Deep learning has demonstrated great potential 
in medical image analysis. Conventional 
convolutional neural networks (CNNs), like VGG 
and ResNet, have attained remarkable outcomes in 
image classification and object detection through 
the incorporation of deeper network architectures 
and residual connections. However, these 
traditional CNNs typically focus on local features, 
making it difficult to effectively capture global 
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contextual information. This limitation is 
particularly evident when processing complex 
medical images, as local features may not fully 
represent the true nature of the disease. 
Additionally, medical image resources are often 
scarce, which presents another challenge. In this 
scenario, DeiT, a data-efficient image processing 
model that utilizes the Transformer architecture, 
has been recognized as a notable development in 
deep learning research in recent years. 

The DeiT model not only captures global 
information from images through a self-attention 
mechanism but also enhances the ability to learn 
from small sample data through knowledge 
distillation, leveraging powerful teacher models. 
Compared to traditional CNN models, DeiT has an 
advantage when processing limited medical image 
data and has shown excellent performance in tasks 
such as early lung cancer detection. 

This paper aims to explore the application of 
the DeiT model in early lung cancer detection. By 
analyzing lung pathological images, this paper 
compares the performance of DeiT with traditional 
convolutional neural networks (such as VGG and 
ResNet) and evaluates its accuracy and potential 
applications in lung cancer detection. Through 
experiments and data analysis, this paper aims to 
validate the advantages of the DeiT model under 
the Transformer architecture in medical image 
analysis, particularly under conditions of limited 
data samples, they provide innovative insights and 
solutions for early lung cancer detection [2]. 

II. RELATED WORK 

Detecting lung cancer at an early stage is 
essential for lowering its high mortality rate. 
Conventional imaging diagnostic techniques, 
including CT scans, X-rays, and pathological 
image analysis, depend on the expertise of 
radiologists, which can introduce subjectivity and 
potential misdiagnosis. With the progress of 
computer vision and deep learning, image-based 
lung cancer detection methods have attracted 
significant attention and are increasingly being 
applied in medical diagnosis. 

A. Lung Cancer Detection Based on Deep 

Learning 

Lately, approaches rooted in deep learning, 
most notably Convolutional Neural Networks 
(CNNs), has exhibited outstanding performance in 
medical image analysis and has progressively 
taken the place of traditional feature extraction 
approaches. Investigations reveal that CNNs have 
achieved remarkable success in identifying lung 
cancer images. Numerous studies have used deep 
learning models for CT screening, yielding high 
accuracy and sensitivity. Additionally, Cohen et al. 
developed an automated lung cancer detection 
system by applying deep learning to analyze lung 
nodules, surpassing the average performance of 
radiologists. In China, deep learning has also been 
widely applied. For example, Li Ming et al. used 
an improved ResNet model to classify lung cancer 
CT images, achieving high accuracy. Meanwhile, 
Zhang Hua et al. proposed a lung cancer detection 
method that integrates multiple deep learning 
networks, further enhancing the model’s detection 
capabilities[3]. 

B. Lung Cancer Detection Based on Pathological 

Images 

Unlike CT images, pathological images provide 
higher resolution, cell-level images, making them 
of significant value in cancer detection and 
diagnosis. Recently, there has been a rising focus 
on using pathological images for lung cancer 
detection. For example, Liu et al. developed a 
CNN-based technique to classify lung cancer 
pathological images, effectively distinguishing 
between malignant and normal regions. The 
research shows that, despite the relative scarcity of 
pathological image data, deep learning models, 
especially CNN-based architectures, can still 
achieve good classification results when 
processing this high-resolution data[4]. 

C. Knowledge Distillation and Small-Sample 

Learning in Lung Cancer Detection 

With the continuous development of deep 
learning technology, knowledge distillation and 
few-shot learning have gradually become new 
directions in lung cancer detection. In recent years, 
researchers have focused on leveraging knowledge 
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distillation techniques to transfer insights from 
larger models to smaller ones, with the goal of 
improving the efficiency of lung cancer 
detection[5]. Studies have shown that the DeiT 
model excels in handling rare data, especially in 
the field of medical imaging, demonstrating strong 
generalization ability. 

Therefore, deep learning-based lung cancer 
detection methods significantly improve accuracy 
and efficiency compared to traditional methods, 
but still face challenges such as data scarcity and 
environmental complexity. The lung cancer 
detection method based on the DeiT model 
proposed in this paper aims to improve the 
accuracy of lung cancer detection under few-shot 
conditions[6]. 

III. TECHNICAL MODEL 

A. Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNNs), as the 
foundation of the two traditional models in the 
comparative experiments of this paper, utilize 
convolution operations to extract image features 
and combine mechanisms such as pooling to 
reduce data dimensions, thereby optimizing the 
processing efficiency of high-dimensional visual 
data. In this paper, two classic representative CNN 
models, VGG16 and ResNet50, were selected to 
train and test the early lung cancer detection task, 
in order to explore their performance in 
classification on complex medical small-sample 
image datasets. Figure 1 presents the fundamental 
structure of the CNN. 

 

Figure 1.  The basic architecture of a convolutional neural network 

1) Convolution and Pooling 

For Convolutional Neural Networks (CNNs), 
convolution acts as an essential process to extract 
features from the input images. This process 
employs a small convolutional kernel, such as a 
3x3 or 5x5 matrix, to produce a feature map from 
the input image. The procedure entails an input 
image matrix I (with dimensions HxW) and a 
kernel matrix K (with dimensions kxk), along with 
a stride S. To control the size of the feature map, 
padding can be applied. Typical padding 
techniques include "valid padding" and "same 
padding," ensuring the output dimensions match 
the input image. The mathematical formulation is 
shown in Equation (1). 



1 1

0 0

( , ) ( , ) ( , )
k k

m n

O i j I i m j n K m n
 

 
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The element situated at position (i,j) within the 
output feature map is represented as O(i,j). I(i+m, 
j+n) is the corresponding element in the input 
image that aligns with the convolution kernel. 
K(m,n) represents the elements of the convolution 
kernel. The variable k represents the size of the 
convolution kernel. The dimensions of the feature 
map can be determined using the following 
equations (2) and (3). 
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Here, P represents the number of padding 
pixels (additional pixels at the image edges), and s 
is the stride. The convolution process is illustrated 
in Figure 2. 

 

Figure 2.  Convolution Process Diagram 
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The pooling layer in CNNs down samples 
feature maps, reducing dimensionality and 
computational complexity while enhancing 
translation invariance and preventing overfitting. 
Typically placed after the convolutional layer, it 
helps the model focus on essential image features. 
Max pooling is a widely used technique that 
selects the maximum value from a 2×2 or 3×3 
window, typically with the stride equal to the 
window size. The formula is given in Equation (4). 


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, maxm )( x ,) (a

k k

m n
O i j I i m j n

k

 

 
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Here, O(i,j) designates the element located at 
the coordinates (i,j) in the output feature map, and 
k represents the size of the pooling window. 
Figure 3 depicts the pooling operation. 

 

Figure 3.  Pooling Process Diagram 

2) VGG16 Model 

VGG-16 is composed of 13 convolutional 
layers, each employing a 3×3 kernel, with a ReLU 
activation function applied after each convolution 
to maintain the network's non-linearity. After 
multiple convolutional layers, a max pooling layer 
is incorporated to execute down-sampling and 
decrease the feature dimensionality [7]. The entire 
model includes 5 pooling layers. 

Following the convolutional and pooling layers, 
VGG-16 consists of three fully connected layers. 
The first two layers contain 4096 nodes each, 
while the final fully connected layer produces the 
classification results. The last component of the 
network is a Softmax output layer, which 
transforms the outputs of the fully connected 
layers into a probability distribution, indicating the 
probability that the image falls into each category. 
This architecture is depicted in Figure 4. 

 

 

 

 

 
Figure 4.  VGG16 Network Architecture Diagram 

3) ResNet Model 

Research on Convolutional Neural Networks 
(CNNs) has demonstrated that as deep neural 
networks grow deeper, they often encounter the 
problems of vanishing or exploding gradients 
during the training phase, thereby making training 

more challenging. In order to address this issue, 
the ResNet [8] model proposes a residual learning 
framework, which effectively overcomes the 
challenges associated with training deep networks. 

Residual learning relies on skip connections, 
allowing the input to bypass layers and pass 
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directly to later ones. This helps the network learn 
a residual function instead of directly learning the 
mapping function. By optimizing the residual 
function, the network can capture complex 
features more effectively. The purpose of residual 
learning can be described by Equation (5). 

 ( { }),y F x Wi x   

Assume x indicates the input, while F(x,{Wi}) 
illustrates the residual function, made up of 
nonlinear transformations (generally two or three 
convolutional layers) with parameters Wi. Let y 
denote the output. The input x is directly 
transmitted to the output via a skip connection, 
subsequently being merged with the result of 
F(x,{Wi}). This procedure is depicted in Figure 5. 

 

Figure 5.  Residual Connection Structure Diagram 

B. Transformer Model 

The Transformer model employs the attention 
mechanism and differs from the architectures of 
Recurrent Neural Networks (RNN) and Long 
Short-Term Memory networks (LSTM) This 
design enables it to excel in parallel computation 
and effectively capture long-range dependencies. 
Since its introduction, the Transformer model has 
gained prominence, particularly in NLP and 
Computer Vision. Its architecture is illustrated in 
Figure 6. 

 

Figure 6.  Transformer Architecture Diagram 

1) Self-Attention Mechanism 

The self-attention mechanism is an essential 
approach in deep learning for managing sequential 
data, and it is widely utilized in Natural Language 
Processing (NLP) and Computer Vision (CV). The 
core idea is to consider the influence of other parts 
when processing each part of the input data, 
allowing the model to capture relationships 
between different parts and helping to capture 
long-range dependencies, thereby improving 
performance on long sequences. The operation 
principle is as follows: Given an input sequence X 
= {x₁, x₂,..., xₙ}, K denotes the key vectors, while 
V represents the value vectors. The similarity 
between each query vector Q and all the other key 
vectors K is determined by computing their dot 
product, then the results are normalized with a 
softmax operation to obtain the attention weights 
for each element. Equation (6) presents the 
computational formula. 
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Each element's representation is updated by 
computing a weighted sum of all value vectors Vj, 
where the weights are determined by the attention 
weights computed above. The calculation formula 
is provided in Equation (7). Eventually, the final 
result comprises a series of representations derived 
from this weighted sum. 
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Unlike traditional RNNs or LSTMs, the self-
attention mechanism considers all elements of the 
sequence simultaneously, allowing better capture 
of long-range dependencies. Since it does not rely 
on the order of input elements, computations can 
be parallelized, improving efficiency. It can be 
applied to various data types, including text and 
images. Self-attention is a powerful technique for 
handling sequential data by modeling similarities 
between elements, enabling better understanding 
of internal relationships. It is widely used in 
advanced models like Transformer, ViT, and DeiT, 
offering significant advantages, especially for long 
sequences. 

 

Figure 7.  Self-Attention Mechanism Computation Diagram 

2) ViT(Vision Transformer) Model 

The Vision Transformer (ViT) is an image 
classification model that is founded on the 
Transformer architecture. It splits an image into 
fixed-size patches, treating each as a "token," and 
uses the self-attention mechanism to process the 
image, bypassing the convolutional layers 
typically found in traditional CNNs. ViT captures 
relationships between distant pixels in an image 
through self-attention, enabling global 
modeling[9]. Unlike CNNs, ViT performs better 
on large-scale datasets and can surpass traditional 
CNN models on massive datasets like ImageNet. 

In ViT, the image is split into several patches, 
with each patch being transformed into a 
representation akin to word vectors. Positional 
encoding is incorporated to allow the model to 
detect spatial relationships among patches. The 
processed patches are fed into the Transformer 
encoder, where their representations are refined 
through self-attention layers. In the end, the output 
is categorized through a fully connected layer. 
Figure 8 illustrates the model architecture. 
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Figure 8.  ViT Architecture Diagram 

3) DeiT(Data-efficient Image Transformer) 
Model 

DeiT is a variant of ViT specifically designed 
to improve the data efficiency of Transformer 
models in image classification tasks. By 
introducing knowledge distillation, the DeiT 
model successfully overcomes the inefficiency of 
training ViT on small datasets, this allows ViT 
models to perform on par with Convolutional 
Neural Networks (CNNs), even when there is a 
limited amount of data [10]. 

The core design principle of DeiT is based on 
knowledge distillation. By incorporating a teacher 
model, knowledge is transferred to the student 
model (DeiT), allowing it to learn more efficient 
feature representations, even with a small amount 
of data. This allows DeiT to achieve strong 
performance on small datasets while avoiding 
overfitting or underfitting issues commonly seen 
in ViT training. 

The working principle of DeiT is similar to that 
of ViT. DeiT first divides the input image into 
fixed-size patches, flattens each patch, and maps 
them into an embedding space through a linear 
transformation. Each patch embedding is then 
enhanced with positional encoding to preserve 
spatial information. After positional encoding, the 

patches are fed into a Transformer encoder, which 
utilizes self-attention mechanisms to capture 
relationships between different patches in the 
image.[11] 

The key innovation of DeiT lies in the 
introduction of the knowledge distillation 
mechanism to improve the training process. 
During training, DeiT optimizes two objectives 
simultaneously: Supervised loss: Computed by 
comparing the output of the class token with the 
hard labels. Distillation loss: Computed by 
comparing the output of the distill token with the 
soft labels generated by the teacher model. 

Specifically, the teacher model generates a 
probability distribution (soft labels) for each class, 
capturing the similarities between categories. The 
distillation loss is calculated using Kullback-
Leibler (KL) divergence, which estimates the 
divergence between the output of the student 
model’s distill token and the soft labels generated 
by the teacher model [12]. 

To integrate these two optimization objectives, 
DeiT defines a total loss function (Ltotal) that 
combines both the supervised loss and the 
distillation loss. The formula is provided in 
Equation (8), where α and β are key weights that 
balance the two loss components. Here, Ltotal 
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denotes the total loss, and Lsupervised refers to the 
supervised loss, and Ldistillation is the distillation 
loss[13]. 

 total supervised distillationL L L    

The supervised loss Lsupervised optimizes the 
parameters of the class token to improve 
classification accuracy, while the distillation loss 
Ldistillation optimizes the parameters of the distill 
token, enabling it to learn deep feature 
representations from the teacher model. 
Additionally, both loss terms jointly optimize the 

shared parameters of the Transformer encoder. 
The distill token is a crucial innovation in DeiT, 
offering a pathway for the student model to 
receive knowledge from the teacher model, 
thereby significantly enhancing its performance on 
small datasets. Through its innovative design and 
distillation techniques, DeiT represents a major 
breakthrough in deep learning for computer vision, 
demonstrating its strong potential, particularly in 
image classification tasks. Its model architecture is 
shown in Figure 9. 

 

Figure 9.  DeiT Architecture Diagram 

 

IV. EXPERIMENT AND ANALYSIS  

A. Experimental Environment and Model 

Parameters 

The models utilized in this experiment were 
trained and fine-tuned on Kaggle with the help of 
the TensorFlow and PyTorch frameworks. The 
code was developed and run in a Jupyter Notebook 
environment. The hardware configuration included 
a GPU P100, TensorFlow version 2.16.1, Python 
version 3.10.14, and PyTorch version 2.4.0. The 
Adam optimizer, with a learning rate of 0.00001 

and cross-entropy loss, was applied during training. 
A batch size of 64 was used, and the model was 
trained for 30 epochs. VGG16, ResNet50, and 
DeiT were evaluated on datasets containing lung 
adenocarcinoma, lung squamous cell carcinoma, 
and normal lung tissue. 

B. Experimental Procedure 

The lung cancer image dataset used in this 
study consists of 15,000 pathological images, 
categorized into three groups: lung_aca (lung 
adenocarcinoma), lung_n (healthy lung tissue), as 
shown in Table 1, the dataset is divided into a 
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training set with 10,500 images, a validation set 
containing 2,250 images, and a test set of 2,250 
images. 

TABLE I.  EXPERIMENTAL DATASET TABLE 

 Training Set Validation Set Test Set 

lung_aca 3500 750 750 

lung_scc 3500 750 750 

lung_n 3500 750 750 

In order to improve the model's capacity for 
generalization, a variety of data augmentation 
methods were utilized on the images throughout 
the training process. These methods included 
arbitrary horizontal flipping, rotation, and 
translation shear. The images were also resized to 
224x224 pixels and normalized using the mean 
and standard deviation from the ImageNet dataset, 
with values (mean = [0.485, 0.456, 0.406] and 
standard deviation = [0.229, 0.224, 0.225]). Data 
augmentation increased the diversity of the 
training data, helping the model learn more 
transformed features, thereby improving its 
performance in various scenarios. The images 
underwent random horizontal flipping with a 
probability of 10%, while the rotation range was 
set between -10 and +10 degrees. Random 
cropping was applied to adjust the images to the 
target size (224x224), with a cropping ratio 
ranging from 90% to 110%. Additionally, random 
transformations through translation and shear were 
applied, with a maximum transformation of 10%, 
helping the model adapt to different perspectives 
and spatial positions. The illustration in Figure 10 
displays nine arbitrarily chosen enhanced images 
derived from the lung cancer pathological training 
dataset. The images are equally distributed across 
three different types of lung cancer: lung 
adenocarcinoma, normal lung tissue, and lung 
squamous cell carcinoma, as mentioned in [14]. 

 

Figure 10.  Randomly selected training sample images 

In this study, the DeiT model 
(deit_base_patch16_224) based on Vision 
Transformer (ViT) was used and compared with 
traditional convolutional neural network (CNN) 
models, specifically VGG16 and ResNet50. 
During training, the Cross Entropy Loss function 
was used to calculate the loss, and the Adam 
optimizer was applied to adjust the model's 
parameters. A learning rate of 1e-5 was chosen, 
and the training spanned 30 epochs. At each epoch, 
the loss and accuracy for both the training and 
validation datasets were calculated to monitor the 
model's progress. 

C. Experimental Results and Analysis  

1) Training Results Analysis 

The model's stability and ongoing performance 
improvement were demonstrated by plotting the 
loss and accuracy curves for both training and 
validation. As shown in Figures 11 and 12, the 
accuracy and loss curves for the VGG16 and 
ResNet50 models exhibited distinct patterns after 
30 epochs of training. During the early epochs, the 
models had lower accuracy and higher loss values. 
However, as training progressed, the accuracy 
gradually improved, and the loss decreased. By the 
end of 30 epochs, both the accuracy and loss 
curves had stabilized, indicating convergence. 
Ultimately, the accuracy of VGG16 and ResNet50 
reached 98.49% and 97.51%, respectively[15]. 
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Figure 11.  Accuracy and Loss Curves of theVgg16  

 

Figure 12.  Accuracy and Loss Curves of the ResNet50  

The DeiT model achieved the best training 
results and the highest accuracy, as shown in 
Figure 13. At the beginning of training, the DeiT 
model already had a high initial accuracy. This is 
due to the introduction of knowledge distillation 
and the self-attention mechanism, which enhance 
its ability to capture contextual information and 
extract complex medical image features more 
effectively. Additionally, the student model 
benefits from the guidance of the teacher model, 
allowing it to develop strong feature learning 

capabilities from the very start. After 30 epochs, 
the DeiT model successfully converged, achieving 
an accuracy of 99.96%, demonstrating its 
outstanding performance in medical image 
classification tasks. Compared to traditional CNN 
models, the DeiT model provides higher accuracy 
on small sample datasets, fully showcasing the 
powerful advantages of self-attention mechanisms 
and knowledge distillation in image classification. 
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Figure 13.  Accuracy and Loss Curves of the DeiT 

2) Testing Results Analysis 

The categorization performance of the DeiT 
model for various classes is graphically depicted 
using a confusion matrix, as illustrated in Figure 
14. The results of the confusion matrix show that 
out of 2,250 test images, 2,249 were correctly 
predicted, with only one misclassification, 
demonstrating the exceptional performance of the 
DeiT model on complex small-sample medical 
images. 

 
Figure 14.  Confusion Matrix 

Assess the model with the aid of the test set. 
The model's performance is assessed by 
calculating the loss and accuracy on the test set, 

along with generating a detailed classification 
report. This report presents the precision, recall, 
and F1-score for each category. Using these 
metrics, the overall average precision, recall, F1-
score, and macro average are computed. The 
formulas for each test metric are presented below 
in Equations (9-13). 


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In this context, TP represents true positives, and 
TN stands for true negatives. The greater the 
values of TP and TN, the superior the model's 
predictive capability. FP refers to false positives, 
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while FN represents false negatives. The smaller 
the values of FP and FN are, the fewer errors the 
model commits in its predictions. N denotes the 
total number of categories. Precisionᵢ signifies the 
precision for category i, whereas Recallᵢ denotes 
the recall for category i, which assesses the 
proportion of actual positive samples that are 
correctly identified. A higher recall means the 
model identifies more positive cases, reducing the 
likelihood of missing them. F1-Scoreᵢ denotes the 
F1-score for class i, which is the harmonic mean 
of precision and recall, effectively balancing both 
metrics. A higher F1-score indicates better overall 
predictive performance. Metricᵢ refers to the 
precision, recall, or F1-score of class i, while Wᵢ 
represents the number of samples in class i. Table 
2 below presents the evaluation metrics calculated 
after the model's execution. 

TABLE II.  PREDICTION METRICS FOR DIFFERENT MODELS 

Model Acc(%) 
Average 

Precision(%) 

Average 

Recall(%) 

Average 

F1-

Score(%) 

Vgg16 
98.49 98.49 98.49 

98.49 

Resnet50 
97.51 97.51 97.51 97.51 

DeiT 99.96 99.96 99.96 99.96 

The test results indicate that the DeiT model 
performs the best. Leveraging self-attention 
mechanisms, it effectively captures long-range 
dependencies in images and employs knowledge 
distillation techniques, making it particularly 
suitable for complex medical image classification 
tasks on small datasets. To provide a more 
intuitive demonstration of the model's 
performance, several samples were randomly 
selected from the test set, comparing the DeiT 
model's predictions with the ground truth 
labels[16]. As shown in Figure 15, these images 
illustrate the model’s classification performance 
across different categories, further validating its 
exceptional performance on small-sample, 
complex medical data. 

 
Figure 15.  Random Test Plot 

V. CONCLUSION AND OUTLOOK 

This study explores the task of lung pathology 
image detection by conducting comparative 
experiments based on VGG16, ResNet50, and 
DeiT models. Given the limited dataset size, the 
experimental results demonstrate that the DeiT 
model, supported by the self-attention mechanism, 
can more effectively capture subtle features in 
pathological images. Additionally, by 
incorporating the knowledge distillation strategy, 
DeiT significantly enhances small-sample learning 
performance. Compared to traditional 
convolutional neural networks, the DeiT model 
achieved the highest classification accuracy on the 
test set, fully showcasing its potential in complex 
medical image analysis. 

Looking ahead, the advantages of the DeiT 
model lay a solid foundation for novel 
opportunities in the domain of medical image 
processing. In broader medical application 
scenarios, such as the diagnosis of rare diseases, 
the combination of the DeiT model with 
knowledge distillation is expected to further 
demonstrate its capabilities on small-scale datasets, 
providing strong technical support for the early 
diagnosis of rare diseases. 

REFERENCES 

 
[1] Wu Hongjie, Tian Chuangchuang, Tao Ran, et al. 

Research on Building Displacement Prediction 
Method Based on Graph Convolution Distillation 



International Journal of Advanced Network, Monitoring and Controls           Volume 10, No.02, 2025 

42 

Transformer. Journal of Suzhou University of Science 
and Technology (Natural Science Edition), 2024, 
41(04): 128-138. 

[2] Yao Yiying, Chen Junji, Ren Denghong, et al. Case 
Analysis of Medical Image Recognition and Diagnosis 
Based on Deep Learning. Application of Integrated 
Circuits, 2024, 41(12): 80-81. 

[3] Liu Yuxin, Meng Yu, Deng Yupeng, et al. A Dual-
Stream Extraction Model for High-Resolution Remote 
Sensing Building Images Integrating CNN and 
Transformer. Journal of Remote Sensing, 2024, 28(11): 
2943-2953. 

[4] Li Yunfei, Li Shuting, Zhang Shuai, et al. Research 
Progress on Deep Learning in Tumor Image 
Classification. Chinese Journal of Cancer Prevention 
and Treatment, 2024, 31(12): 719-724. 

[5] Zong Haoyu, Qin Yuliang, You Ziyuan. Advances in 
Deep Learning Applications in Musculoskeletal 
Imaging. Imaging Research and Medical Applications, 
2024, 8(10): 1-3. 

[6] Liu Libing, Fu Liyao. Applications and Prospects of 
Deep Learning Technology in Medical Image Analysis. 
New Generation Information Technology, 2024, 7(01): 
24-28. 

[7] Hu Kun, Wu Guoqing, Hu Zuhui, et al. Research on 
Metal Surface Defect Image Classification Based on 
an Improved VGG16 Network. Computer 
Applications and Software, 2024, 41(06): 175-180. 

[8] Liu Yansheng, Yu Qianru, Zhang Kun, et al. 
Establishment and Clinical Testing of a ResNet-Based 
Model for Colonoscopy Image Classification of 
Ulcerative Colitis. World Science and Technology - 
Modernization of Traditional Chinese Medicine, 2024, 
26(09): 2346-2354. 

[9] Lin Hailin, Chen Guoming, Tang Peiyu, et al. A 
Lightweight Image Classification Method Based on 
Convolutional Vision Transformer Fusion. Modern 
Computer, 2024, 30(22): 1-7. 

[10] Chen Ning, Liu Fan, Dong Chenwei, et al. Few-Shot 
Image Classification Based on Local Contrastive 
Learning and New Class Feature Generation. Pattern 
Recognition and Artificial Intelligence, 2024, 37(10): 
936-946. 

[11] Wang Haibao, Liu Hongyan, Wei Zhi, et al. Research 
on Bone Marrow Cell Image Classification Based on 
Deep Learning. Genomics and Applied Biology, 2024, 
43(Z2): 1872-1882. 

[12] Gong Xuanjin. Long-Tailed Visual Recognition 
Method Based on Multi-Classifier Hierarchical 
Distillation. Modern Information Technology, 2024, 
8(16): 49-52+59. 

[13] Zhao Hongwei, Wu Hong, Mark, et al. An Image 
Classification Framework Based on Knowledge 
Distillation. Journal of Jilin University (Engineering 
Edition), 2024, 54(08): 2307-2312. 

[14] Zhou Chengyang, Liu Wei, Wu Tianrun, et al. Rock 
Thin Section Image Classification Based on a Hybrid 
Expert Model. Journal of Jilin University (Science 
Edition), 2024, 62(04): 905-914. 

[15] Zhang Li, Yang Minghui, Sun Jiacheng. Few-Shot Tea 
Leaf Disease Recognition Based on Attention 
Mechanism and Transfer Learning. Journal of Chinese 
Agricultural Mechanization, 2024, 45(10): 262-268. 

[16] Zhao Tingting, Gao Huan, Chang Yuguang, et al. 
Fine-Grained Image Classification Method Based on 
Knowledge Distillation and Target Region Selection. 
Computer Applications Research, 2023, 40(09): 2863-
2868. 

.

 


