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Abstract—In domains such as medical diagnostics, 

surveillance technology, and geospatial imaging, the 

escalating need for ultra-high-definition imagery has 

exposed the limitations of conventional super-resolution 

methods. These legacy algorithms often fail to deliver 

the precision and clarity demanded by modern 

applications. Therefore, this article proposes an 

optimization algorithm based on the AWSRN network 

model, aiming to achieve efficient image super-

resolution reconstruction, reduce computational costs, 

and enhance image realism. Firstly, optimize the 

internal structure of the network and enhance its feature 

extraction and fusion capabilities; Secondly, to enhance 

feature extraction precision, a novel module integrating 

depth-separable convolution with an attention-based 

mechanism is proposed. Additionally, a hybrid loss 

function- merging perceptual quality metrics with 

adversarial training objectives-is employed to rigorously 

evaluate the disparity between generated and ground-

truth images. The MPTS training strategy further 

optimizes convergence efficiency. Empirical evaluations 

demonstrate that the enhanced AWSRN model achieves 

substantial improvements over its baseline counterpart 

across multiple upscaling factors, particularly at 4× 

magnification. Specifically, on the Urban100 benchmark, 

the proposed method elevates PSNR by 1.06 points and 

SSIM by 0.0239, while maintaining computational 

efficiency. These advancements offer valuable insights 

for high-fidelity image upscaling methodologies. 

Keywords-Deep Learning; Image Super-Resolution 

Reconstruction; AWSRN Network Architecture; 

Algorithm Optimization 

I. INTRODUCTION  

In recent years, image super-resolution 
enhancement has emerged as a prominent focus in 
visual data optimization. Its primary objective is to 
reconstruct high-definition visuals from their 
degraded low-quality counterparts, addressing the 
growing need for enhanced image fidelity. This 
approach demonstrates significant applicability 
across diverse domains, including medical 
diagnostics, surveillance systems, and satellite 
imagery analysis. However, super-resolution 
reconstruction technology also has its 
shortcomings. Firstly, the super-resolution 
reconstruction algorithm is computationally 
complex and requires strict hardware computing 
resources, which limits its application in scenarios 
with high real-time requirements or hardware 
limitations. Secondly, in terms of texture detail 
restoration, reconstructed images are prone to 
issues such as artifacts and blurriness, which may 
result in discrepancies with high-resolution real 
images. Thirdly, existing models have poor 
generalization ability, and models trained on 
specific datasets have poor reconstruction 
performance when faced with complex and diverse 
real-world images. 

The field of computer vision has witnessed 
remarkable advancements in enhancing image 
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resolution through deep learning techniques in the 
past decade. Initial approaches relying on 
interpolation-based algorithms and conventional 
modeling techniques demonstrated constrained 
capabilities, until neural network methodologies 
revolutionized this domain. A pivotal development 
occurred when researchers led by Chao Dong 
introduced SRCNN (Super-Resolution 
Convolutional Neural Network), marking the 
inaugural successful implementation of CNN 
architectures for resolution enhancement tasks. 
This framework employed direct training to 
establish nonlinear transformations between 
degraded and high-quality image spaces, yielding 
substantially superior results compared to classical 
approaches [1]. 

Subsequent architectural innovations continued 
to push performance boundaries. The VDSR (Very 
Deep Super-Resolution) architecture, developed in 
2016, enhanced output quality through increased 
network depth, demonstrating measurable 
improvements in quantitative metrics including 
peak signal-to-noise ratio, thereby producing 
outputs with greater fidelity to reference high-
definition images [2]. That same year saw the 
introduction of DRCN (Deeply-Recursive 
Convolutional Network), which implemented 
parameter-sharing through recursive connections, 
achieving comparable accuracy with reduced 
computational overhead and more efficient 
resource utilization [3]. 

Building upon these foundations, subsequent 
architectural refinements yielded continuous 
improvements. The 2016-introduced VDSR 
architecture enhanced reconstruction fidelity 
through network depth expansion, demonstrating 
superior performance on quantitative assessment 
measures including signal-to-noise ratio metrics, 
thereby producing outputs with enhanced 
objective quality relative to reference high-
definition images [4]. That same year saw the 
development of DRCN, which employed recursive 
connectivity patterns to achieve parameter 
efficiency without compromising reconstruction 
precision, thereby optimizing computational 
resource utilization [4]. 

A significant advancement emerged in 2019 
with Chaofeng Wang's team introducing AWSRN, 
an adaptive learning framework for resolution 
enhancement. This lightweight architecture 
incorporated dynamic feature weighting 
mechanisms that automatically adjusted fusion 
parameters based on regional importance within 
the input image, substantially enhancing both 
output realism and processing efficiency [5]. 
However, the model exhibits limitations when 
processing complex scenes or non-standard 
textures. Particularly for artistic imagery with 
distinctive color distributions and textural patterns 
- characteristics often divergent from conventional 
training datasets - the system frequently generates 
artifacts including distorted textures and inaccurate 
color reproduction, ultimately failing to preserve 
the original stylistic integrity in the enhanced 
outputs [6].To address these challenges, our study 
presents architectural refinements to both the 
adaptive weighting residual components (AWRU) 
and region-specific feature integration modules 
(LRFU). These modifications strengthen the 
network's capacity for hierarchical feature 
processing within localized receptive fields 
(LFBs), while an enhanced multi-scale weighting 
mechanism (AWMS) improves handling of 
intricate textural patterns. The framework further 
incorporates: (1) a hybrid optimization objective 
combining multiple loss terms, and (2) an adaptive 
training protocol, collectively enhancing 
reconstruction fidelity. Experimental validation 
demonstrates consistent superiority over baseline 
AWSRN across standard benchmarks 
(B100/Urban100), with measurable gains in both 
PSNR and structural similarity metrics, confirming 
the efficacy of our design improvements. 

II. IMAGE SUPER-RESOLUTION 

RECONSTRUCTION MODEL BASED ON AWSRN 

The core competitiveness of AWSRN lies in its 
unique network architecture and module design, 
which efficiently achieves image super-resolution 
reconstruction. The AWSRN network architecture 
diagram is shown in Figure 1, which includes two 
core modules: Local Fusion Block (LFB) and 
Adaptive Weighted Multi Scale (AWMS) Module.
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Figure 1.  AWSRN Network Architecture Diagram 

 
The LFB module is ingeniously integrated from 

stacked Adaptive Weighted Residual Units 
(AWRU) and Local Residual Fusion Units 
(LRFU). The AWRU unit introduces an adaptive 
weighting mechanism that can dynamically adjust 
weights based on the importance of different 
features, directing the model's attention toward 
salient features that substantially enhance 
reconstruction outcomes. This adaptive weighting 
strategy enhances the efficiency of information 
and gradient flow without introducing additional 
parameters, achieving precise learning of image 
residual information. The LRFU unit further 
leverages the advantages of local residual fusion, 
effectively integrating residual information from 
different AWRU units and enhancing the 
network's expressive power. 

The AWMS module has the ability to fully 
explore feature information in the reconstruction 
layer. This module embeds multiple convolutional 
branches at different scales, which can capture 
detailed information at different scales in the 
image. By utilizing convolution operations at 
multiple different scales, the AWMS module 
adaptively adjusts the weights of each branch, 
effectively reducing redundant calculations while 
ensuring performance. In addition, the AWMS 
module will intelligently remove redundant scale 
branches based on the evaluation of network 
contributions using adaptive weights, and only 
retain branches that significantly contribute to the 

reconstruction results. This adaptive weighted 
multi-scale structure not only improves the 
efficiency of the network in utilizing feature 
information, but also significantly enhances the 
reconstruction performance. 

III. OPTIMIZATION AND IMPROVEMENT BASED 

ON AWSRN 

Through in-depth analysis of the network 
structure, reconstruction method, loss function, 
and training strategy of AWSRN, we propose a 
series of innovative improvement measures. These 
architectural refinements simultaneously augment 
the network's detail preservation capacity while 
elevating visual quality metrics including 
sharpness, structural consistency, and 
photorealistic fidelity. 

A. Improvement of Network Structure 

The AWSRN network architecture diagram is 
shown in Figure 2. Firstly, for the optimization of 
Local Feature Blocks (LFBs), Our optimization 
efforts primarily targeted the enhancement of 
Adaptive Weighted Residual Units (AWRUs) and 
Local Residual Fusion Units (LRFUs) 
performance characteristics. At the AWRU level, 
an innovative global context aware weight 
learning mechanism has been introduced. 
Extracting global contextual features through 
Global Average Pooling (GAP), as shown in 
formula (1). 
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In this context, 
H W CX R
   represents the input 

feature map, where H  and W  denote the spatial 
dimensions of height and width, while the value 
C  corresponds to the total number of channels.

1 1 Cg R
   is the global contextual feature vector. 

This mechanism not only considers the importance 
of local features, but also combines global 
contextual information, by using a two-layer fully 
connected network (FC) to learn channel attention 
weights, adaptive weight learning is achieved as 
shown in formula (2). 

 2 1 1 2( ( ) )W W g b b        

Within this framework, 1

'/C r CW R
  and 

2

' /C rCW R
  denote adjustable weight parameters 

optimized during training. r  represents the 

compression factor, fixed at 16, while 1b  and 2b  
correspond to bias components. The nonlinear 

activation operator   is implemented using ReLU, 
used to normalize weights to the range of [0,1], 

and 
1 1 C

R    is the learned channel attention 
weight. This mechanism can achieve more 
accurate weight allocation. This improvement 
significantly enhances AWRU's ability to capture 
image detail information, providing richer and 
more accurate feature representations for 
subsequent image reconstruction.

 

 
Figure 2.  Improved AWSRN network architecture diagram 
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Secondly, at the LRFU level, we adopted a 
more optimized feature fusion strategy. Through 
the incorporation of hierarchical feature 
integration and focus weighting modules, effective 
exploitation of multi-level feature representations 

is accomplished， thereby further improving the 

quality of reconstructed images. This improvement 
enables LRFU to more effectively integrate 
features from different scales and levels, providing 
more comprehensive and refined feature support 
for image reconstruction. 

In addition, we also optimized the Adaptive 
Weighted Multiscale (AWMS) module. By 
introducing richer scale information and more 
efficient feature extraction strategies, the 
adaptability of the AWMS module to different 
scale image features has been significantly 
improved. This improvement not only enhances 
the feature extraction capability of the AWMS 
module, but also increases its sensitivity to image 
details, thereby further improving the overall 
performance of AWSRN. 

B. Improvement of Reconstruction Methods 

Given the challenges posed by diverse image 
textures, intricate edge details, and noise artifacts, 
our proposed framework (Figure 3) introduces a 
novel super-resolution pipeline designed to 
optimize feature capture completeness and fusion 
accuracy, thereby advancing reconstruction 
fidelity. 

Our architecture's feature representation phase 
incorporates a sophisticated unit merging spatially-
efficient convolutional decomposition and 
dynamic feature recalibration. The decomposed 
convolution process involves: (1) independent 
spatial filtering per channel, and (2) linear channel 
combination. The formula for deep convolution is 
shown in formula (3). 

Input feature map 
H W CX R
  ,deep 

convolution kernel
K K CK R
   , output feature 

map depth

H W C
Y R

  . 


1 1

0 0

( , , ) ( , , ) ( , , )
k k

depth
m n

i j c K m n c X i m j n cY
 

 

    

Among them, ( , )i j  is the spatial position, and 
c  is the channel index. The pointwise convolution 

is shown in formula (4). 

. 

Figure 3.  Innovative image super-resolution reconstruction process 

Among them, ( , )i j  is the spatial position, and 
c  is the channel index. The pointwise convolution 
is shown in formula (4). 

Point by point convolution kernel 
'1 1 C CW R

    , 

output feature map int

'

po

H W CY R
   . 


0
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int

' '( , , ) (1,1, , ) ( , , )
C

C

po depth
i j W c i j cc cY Y




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Among them, 
'c  is the output channel index. 

This module not only efficiently extracts multi-
scale features from input low resolution images, 
but also adaptively weights the feature maps 
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through attention mechanisms. The attention 

module computes importance scores 
'H W CA R

   
to dynamically adjust feature representations. 
These attention coefficients are derived using 
Equation (5). 

Input feature map intpoY  and generate attention 

weight A  through fully connected or 
convolutional layers. 

 int( )a po aA W Y b    

Among them, aW  and ab  are learnable 
parameters, where    represents the nonlinear 
activation operation. 

The weighted combination of feature 
representations follows the derivation in formula 
(6). 

Weighted feature map 
'H W C

att RY   .   


int

' ' '( , , ) ( , , ) ( , , )
att po

i j A i j i jc c cY Y   

By introducing this module, the sensitivity of 
the model to key image information has been 
enhanced. The integration of deep features with 
attention-based weighting enhances the 
effectiveness of feature learning, but also ensures 
the richness and accuracy of feature representation. 

In the feature fusion stage, we designed a 
refined fusion strategy based on Long-range 
structural recurrence and channel dependence. 
Long-range structural recurrence is used to capture 
long-range dependencies between feature maps. 
This strategy calculates the similarity between 
feature maps, and the calculation process is as 
follows: 

For an input feature representation 
C H WX R
   

(channel depth C , spatial size H ×W ), the long-
range dependency operations are formulated in (7). 

 ,
1

( ) ( )
( )

i i j j

j

X X g X
C X

Y f


   

Among them, iY  is the i-th position of the 

output feature map.
( , )i jX Xf

 is a similarity 
function as shown in formula (8), usually using 
Gaussian function or dot product to calculate the 

similarity between positions i  and j  . 


( )( )

( , )
T

ji XX

i jX Xf e
 

  

Among them,   and   are linear 
transformations, usually implemented through 1x1 

convolution.
( )Xjg

 is a characteristic 
transformation function as shown in formula (9), 
usually also a linear transformation. 

 ( )j g jX W Xg   

( )C X   is the normalization factor as shown in 
formula (10). 


( ) ( , )i j

j

C X f X X


  

Channel dependence is used to dynamically 
adjust the weights of feature maps to enhance the 
ability to capture high-frequency details. Given the 

feature map 
C H WY R
  , channel dependence can 

be achieved through the following steps. 

Firstly, calculate the channel attention weight 
1 1CA R
   as shown in formula (11). 

 2 1( ( ( )))A W W GAP Y   

Among them, ( )GAP Y  is a global average 
pooling operation that compresses the spatial 
dimension of the features to 1×1 spatial resolution, 

The learnable parameters 1W  and 2W  correspond 

to the linear transformation weights, while   
denotes the element-wise activation operator. The 
sigmoid function   ensures attention coefficients 
fall within the unit interval. These weights are then 
used to recalibrate channel features as 
mathematically defined in (12). 

 Z A Y   
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Where represents channel wise multiplication 
operation. 

The proposed component facilitates cross-
spatial feature synthesis, establishing robust 
connections between distant image regions. 
Through channel-wise importance modulation, the 
framework demonstrates enhanced sensitivity to 
texture details with improved noise suppression. 
These refinements yield reconstructions with 
superior definition and more natural visual 
continuity. 

To rigorously validate our approach, we 
performed extensive training iterations on the 
DIV2K benchmark, adhering to established super-
resolution evaluation protocols. Quantitative 
comparisons with current AWSRN architectures 
reveal that our novel feature integration 
framework delivers superior perceptual quality. 
The method exhibits particular advantages in 
processing challenging visual patterns containing 
intricate structures and sharp transitions. 

C. Improvement of Loss Function 

The conventional loss formulation adopted 
from AWSRN studies incorporates both MSE and 
PSNR-optimized components. While this 
framework provides basic pixel-level fidelity 
measurement between reconstructed and reference 
images, it demonstrates notable limitations in 
preserving fine structural details, textural patterns, 
and perceptual authenticity. These traditional loss 
functions often result in reconstructed images 
being too smooth, lacking realistic texture details 
and sharp edges. 

To address these limitations, we enhance the 
AWSRN optimization framework through a 
hybrid loss formulation integrating perceptual and 
adversarial components. The perceptual term 
quantifies feature-level discrepancies in texture, 
edge, and structural patterns by evaluating VGG-
encoded representations (using a pre-trained VGG 
network in our implementation). Simultaneously, 
the adversarial component employs GAN-based 
discriminative evaluation to improve visual 
authenticity and realism in reconstructions [7]. 

The perceptual discrepancy metric computes 
either L1 or L2 norms between the feature 

activations of reconstructed and reference images, 
extracted from designated VGG network layers. 
This formulation, mathematically expressed in 
Equation (13), serves to reduce semantic-level 
feature distortions in the output. 

 _ _ (1/ _ )* _ ( _ ) _ ( _ arg ) 2L perceptual l N l l I generated l I t et    

Among them, _L perceptual  represents the 

perceptual loss, _ l  represents the features 
extracted by the pre trained network at the l-th 

layer, 2I  generated represents the generated image 

(i.e. reconstructed image), 2I  target represents the 
target image (i.e. original image), N1 represents 

the dimension of the l-th layer features, 2  
represents the L2 norm (i.e. the square of 
Euclidean distance). 

The computation involves aggregating L2-norm 
distances across all feature map layers to derive 
the cumulative perceptual discrepancy metric. This 
quantitative measure evaluates the divergence 
between reconstructed and reference images 
within deep feature representations. 

The adversarial optimization framework 
employs a discriminative network trained to 
differentiate super-resolved outputs from ground 
truth samples, while simultaneously optimizing the 
generator (AWSRN architecture) to produce 
visually plausible results capable of bypassing this 
discrimination, as mathematically formulated in 
Eq. (14). 

 _ [log( ( ( )))]L adversarial E D G z  

Among them, _L adversarial  represents 

adversarial loss, D  represents discriminator, G  
represents generator (i.e. AWSRN), z  represents 
random noise or low resolution image input to the 

generator, 
  ...E

 represents expectation. 

The proposed optimization framework 
combines perceptual and adversarial losses 
through weighted summation, yielding the final 
objective function as defined in Equation (15). 

_ _ _ _ * _L total perceptual L perceptual adversarial L adversarial    
  
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Among them, _L total  represents the total loss 

function, while  _  perceptual  and  _  adversarial  
represent the weight coefficients of perceptual loss 
and adversarial loss, respectively. 

D. Training Strategy Improvement 

To address AWSRN's training challenges 
including slow convergence, local optimum 
trapping, and inadequate high-frequency feature 
learning, we develop a Multi-Phase Training 
Scheme (MPTS). This framework implements: (1) 
A hierarchical curriculum learning approach that 
incrementally processes images from reduced to 
full resolution, enhancing detail learning [8]; (2) 
An adaptive learning rate mechanism 
incorporating cosine annealing with warm restarts 
for optimized convergence; (3) A Feature-
Adaptive Sample Selection (FASS) module that 
prioritizes high-information-content samples based 
on feature distribution analysis [9]. 

IV. EXPERIMENT AND ANALYSIS 

A. Train Data Set 

The DIV2K benchmark comprises 800 training 
and 100 validation images in high-resolution (HR) 
format, all exhibiting exceptional visual quality 
with well-preserved fine details. This collection 
serves as an excellent resource for developing and 
testing super-resolution methods. A key advantage 
of this dataset is its systematic degradation 
pipeline, which allows generation of low-
resolution (LR) counterparts at multiple 
magnification levels (×2, ×3, ×4) through 
automated scripts. This standardized preprocessing 
ensures dataset uniformity while simplifying 
experimental setup [10]. 

Furthermore, DIV2K incorporates both bicubic 
interpolation and configurable degradation models 
to generate more authentic low-resolution 
counterparts, enabling comprehensive evaluation 
of SR methods. The dataset's premium-quality 
images serve as an optimal training basis for 
AWSRN, with diverse samples enhancing the 
network's adaptability and reconstruction quality. 
The validation subset facilitates rigorous 
assessment of model precision and stability, 
verifying practical deployment readiness. 

The DIV2K dataset's superior image quality 
establishes an optimal training basis for AWSRN, 
with its diverse samples significantly enhancing 
the network's cross-domain adaptability and 
reconstruction fidelity. For performance 
verification, the dedicated validation set enables 
comprehensive assessment of the model's 
precision and stability, confirming its operational 
effectiveness in real-world scenarios [11]. 

B. Experimental Hardware Configuration 

The hardware configuration of this experiment 
adopts AMAX workstation, equipped with Intel 
Xeon Gold 6254 processor (18 cores, 36 threads, 
main frequency 3.1GHz) and 32GB DDR4 
2666MHz ECC memory, ensuring high-
performance computing and data reliability. The 
operating system is Ubuntu 18.04 LTS, and the 
graphics card is NVIDIA GeForce RTX 2080 Ti 
(11GB GDDR6 VRAM), supporting CUDA and 
cuDNN acceleration, suitable for training deep 
learning models. The storage is configured as a 
1TB NVMe SSD for fast reading and writing of 
datasets and model files. 

C. Experimental Process 

To validate our optimization approach for 
super-resolution generation, we first trained the 
model using DIV2K data. For quantitative 
evaluation, benchmark datasets B100 and 
Urban100 were employed, with reconstruction 
quality assessed through two established metrics: 
PSNR (quantifying pixel-level accuracy) and 
SSIM (measuring structural preservation). These 
measurements enable systematic comparison 
between generated and reference high-resolution 
images, providing objective performance 
evaluation. The experimental procedure consists of: 

a). Data curation involves systematically 

pairing high-resolution source images with their 

synthetically degraded counterparts (generated 

through resolution reduction) to create organized 

training and evaluation subsets. 

b). The experimental framework involves 

implementing an adaptive-weighted SR network 

in Python, incorporating structural refinements to 

the Local Fusion Block (LFB). Key enhancements 

include optimizing the Adaptive Weighted 
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Residual Unit (AWRU) and Local Residual 

Fusion Unit (LRFU), along with improvements to 

the Adaptive Weighted Multi-Scale (AWMS) 

module, all trained using the Adam optimizer. 

c). Data preprocessing: Preprocessing the 

selected image data, including image 

normalization, cropping, scaling, and other 

operations, in order to input it into the model for 

training and testing. 

d). The training phase involves feeding low-

resolution (LR) samples from the benchmark 

dataset into the network, with corresponding high-

resolution (HR) images serving as ground truth 

targets for supervised learning. 

e). During the assessment phase, the optimized 

network processes low-resolution test samples to 

perform super-resolution restoration. Comparative 

visual results in Figure 4 demonstrate enhanced 

detail preservation, with panel (a) displaying 

baseline AWSRN outputs and panel (b) showing 

our improved reconstruction quality. 

 

 

Figure 4.  Comparison of image reconstruction details 

To quantitatively evaluate reconstruction 
quality, we employ two established metrics: PSNR 
measures pixel-level fidelity, while SSIM assesses 
structural preservation relative to ground truth HR 
references. Quantitative comparisons at ×4 
magnification appear in Table I, with 
corresponding ×8 results presented in Table II. 

 

TABLE I.  QUANTITATIVE COMPARISON ON A SCALE 

FACTOR OF 4 

 

Scale 

 

Model 

B100 

PSNR/SSIM 

Urban100 

PSNR/SSIM 

 

4 
AWSRN 27.64/0.7385 26.29/0.7930 

Improved 
AWSRN 

28.47/0.7592 27.35/0.8169 

 

TABLE II.  QUANTITATIVE COMPARISON ON A SCALE 

FACTOR OF 8 

 

Scale 

 

Model 

B100 

PSNR/SSIM 

Urban100 

PSNR/SSIM 

 

8 
AWSRN 24.80/0.5967 22.45/0.6174 

Improved 
AWSRN 

25.32/0.6214 23.18/0.6438 

D. Experimental Results 

Quantitative analysis reveals consistent 
performance gains across all test conditions. For 
4× super-resolution, the enhanced ASWRN 
architecture demonstrates measurable 
improvements over baseline AWSRN, with B100 
dataset showing PSNR/SSIM gains of +0.83 
dB/+0.0207 and Urban100 achieving +1.06 
dB/+0.0239 improvements. At 8× magnification, 
quality metrics further improve, with B100 
registering +0.52 dB/+0.0247 and Urban100 
showing +0.73 dB/+0.0264 enhancements. These 
progressive gains with increasing scale factors 
confirm the optimization's effectiveness in 
bridging the gap between reconstructed and 
reference images. 

The empirical analysis confirms the enhanced 
AWSRN framework's efficacy in single-image 
super-resolution applications, demonstrating 
substantial improvements in both computational 
efficiency and reconstruction fidelity compared to 
existing approaches. This optimized architecture 
achieves superior high-frequency detail recovery 
and perceptual quality, offering valuable insights 
for advancing SR algorithm development and 
computer vision applications [12]. 

V. CONCLUSIONS 

This study proposes an improved AWSRN 
super-resolution network algorithm that effectively 
addresses the efficiency and optimization issues in 
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image super-resolution reconstruction. By 
optimizing the LFB, LRFU, and AWMS modules, 
the ability to capture details and reconstruction 
results have been significantly improved. 
Empirical evaluations on B100 and Urban100 
benchmarks demonstrate consistent metric 
improvements (PSNR/SSIM) in the enhanced 
model, with reconstructions exhibiting superior 
fidelity to ground truth references. This framework 
introduces novel paradigms for single-image 
super-resolution while advancing computer vision 
methodologies. Future directions include: (1) 
architectural refinements for scenario-specific 
performance tuning, (2) development of robust 
optimization protocols to enhance model stability 
and computational efficiency. The current module-
level optimizations establish a strong foundation 
for subsequent algorithmic developments. 
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