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Abstract—Road surface disease detection is a vital 

component of road maintenance. Traditional deep 

learning-based detection methods face challenges such as 

low detection accuracy, high false alarm rates in complex 

scenarios, and significant missed detection rates for small 

targets like potholes. To address these limitations, this 

paper proposes an improved pavement disease detection 

algorithm based on RT-DETR. First, a lightweight 

backbone network named LMBANet is constructed by 

integrating DRB and ADown modules. This network 

enhances feature extraction capabilities without 

increasing computational overhead during inference, 

preserving local details of low-level features while 

expanding the receptive field to capture long-range 

semantic information and reduce false detection of 

diverse defects in complex scenes. Second, an small-target 

enhanced feature pyramid network is designed using 

SPDConv and OmniKernel. By feeding large-scale 

feature maps extracted by the backbone into a feature 

fusion layer and enhancing multi-scale feature 

representation through EFKM, this network resolves the 

high missed detection rate of small targets in the original 

model. Experimental results demonstrate that on the 

RDD2020 dataset, the improved network achieves an 

mAP of 69.2%, representing a 2.1 percentage point 

improvement over the original network, while 

simultaneously reducing parameters and computational 

costs. 

Keywords-Deep Learning; Road Surface Disease 

Detection; RT-DETR; Lmbablock; STEP 

I. INTRODUCTION  

Roads are critical components of the 
transportation system, with highway construction 
playing a particularly vital role in infrastructure 
development. Highway transportation significantly 
facilitates public travel and accelerates 
socioeconomic progress. However, pavement 
health issues can severely impact traffic safety. If 
maintenance is delayed until obvious pavement 
damage occurs, repair costs will escalate 

dramatically. Therefore, early detection and repair 
of potholes and cracks using intelligent inspection 
technologies are essential for ensuring 
transportation safety and reducing long-term 
maintenance expenses. 

Early pavement damage identification and 
assessment methods primarily relied on manual 
inspections conducted by road maintenance 
workers. These workers would patrol the road 
network, visually inspecting and manually 
measuring various damage parameters to evaluate 
the overall pavement deterioration. Although this 
human-based approach offers simplicity and 
relatively high accuracy, it suffers from several 
significant drawbacks: the labor-intensive process 
is time-consuming and inefficient, often causing 
urban traffic congestion during inspections, which 
adversely impacts transportation efficiency and 
poses potential safety hazards. Consequently, 
manual inspections have gradually been replaced 
by specialized pavement inspection vehicles 
equipped with professional Charge-Coupled 
Device (CCD) cameras. These vehicles enable 
quantitative assessment of road defects through 
continuous video recording without disrupting 
normal traffic flow. However, they still require 
manual image processing for damage analysis, and 
their high operational costs fail to resolve the 
substantial consumption of human and financial 
resources. 

With the remarkable success of deep learning 
technology, computer vision approaches have been 
widely adopted for pavement damage detection 
tasks. Current mainstream object detection models, 
however, struggle to balance computational 
complexity with detection performance. Models 
with high computational complexity face 
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deployment challenges in real-world scenarios, 
while lightweight models with reduced 
computations often exhibit insufficient detection 
accuracy, particularly showing susceptibility to 
false positives and missed detections under 
complex environmental conditions. These 
limitations hinder their ability to meet practical 
engineering requirements. To address these 
challenges, this paper proposes an enhanced model 
based on RT-DETR (Real-Time Detection 
Transformer), aiming to optimize both 
computational efficiency and detection reliability in 
pavement damage identification. 

II. RELATED WORK RESEARCH 

In recent years, with advancements in artificial 
intelligence and computer hardware technologies, 
scholars have progressively applied object 
detection models such as Faster R-CNN, YOLO, 
and DETR to pavement damage detection. These 
algorithms enable automatic identification of 
damaged road areas through single-image input 
while achieving satisfactory detection performance. 
Li et al. [1] employed Faster R-CNN to analyze 
5,966 road defect images captured from diverse 
angles and distances. Experimental results 
demonstrated the model's robust detection 
capability under varying illumination conditions, 
effectively recognizing five categories of road 
defects: transverse cracks, longitudinal cracks, 
potholes, alligator cracks, and manhole-related 
defects. 

The YOLO series of algorithms achieve 
extremely fast inference speeds while maintaining 
high detection accuracy, and their robust real-time 
detection capabilities have made them widely 
adopted in pavement damage recognition. Joseph 
Redmon et al. [2] introduced a feature pyramid 
network in YOLOv3 to leverage multi-scale feature 
maps for improving recognition accuracy of targets 
of varying sizes. Duan et al. [3] further enhanced 
cross-scale feature extraction by integrating a Bi-
directional Feature Pyramid Network (BiFPN). 

The success of Transformer models in natural 
language processing has demonstrated the 
exceptional capability of attention mechanisms in 
integrating global contextual semantic information. 
Researchers began exploring their applications in 

computer vision. Dosovitskiy et al. [4] proposed the 
Vision Transformer (ViT), a deep learning model 
specifically designed for computer vision tasks 
using self-attention mechanisms. ViT processes 
input images by dividing them into patchembeding, 
learning global contextual information through 
self-attention, and subsequently passing these 
features to fully connected layers for classification 
or regression tasks. However, ViT's global attention 
mechanism requires computing pairwise 
relationships between all image patches, resulting 
in quadratic computational complexity (O(N²)) that 
poses challenges for high-resolution images and 
large-scale datasets. 

Facebook AI [5] introduced DETR (Detection 
Transformer) in 2020 as an end-to-end global 
detection framework. DETR employs a CNN 
backbone for feature extraction followed by 
Transformer encoder-decoder layers for prediction. 
It replaces anchor generation with learnable object 
queries and utilizes a bipartite matching-based loss 
function to enforce one-to-one prediction matching, 
eliminating non-maximum suppression (NMS). 
Building upon DETR, Zhu et al. [6] proposed 
Deformable Attention to address the O(N²) 
complexity of standard attention, resolving slow 
convergence and high feature map dependency. 
Chen et al. [7] developed Group DETR, which 
employs multiple object queries to retain end-to-
end inference advantages while accelerating 
convergence through one-to-many supervision. 
DINO [8] enhances detection robustness via 
contrastive denoising to reduce anchor dependency 
and improve occluded object recognition. Co-
DETR [9] implements a collaborative hybrid 
training scheme with auxiliary detectors like ATSS 
and Faster R-CNN, enriching supervision signals 
for small object detection. MFDS-DETR [10] 
introduces a hierarchical semantic FPN (HS-FPN) 
to optimize multi-scale feature fusion, significantly 
boosting small target detection accuracy. 

In 2023, Baidu's PaddlePaddle team [11] 
introduced RT-DETR (Real-Time Detection 
Transformer), a highly practical industrial-grade 
detector featuring an efficient hybrid encoder. This 
architecture combines an Attention-based Intra-
scale Feature Interaction Module for contextual 
refinement and a CNN-based Cross-scale Feature-
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fusion Module for multi-level integration, 
achieving real-time performance through 

computational redundancy reduction while 
maintaining detection precision. 

 
Figure 1.  Road surface damage dataset under different conditions

However, most existing approaches primarily 
predict pavement crack defects under conventional 
conditions, demonstrating limited robustness in 
complex environmental scenarios. As illustrated in 
Figure 1, these challenging scenarios include 
shadow interference, rainy conditions, color 
segmentation ambiguities, dense defect 
distributions, and pothole clusters. Current object 
detection algorithms generally suffer from three 
critical limitations: Similarity between defect 
features and background textures frequently causes 
false positives; The spatial continuity and linear 
characteristics of cracks often lead to 
misclassification alligator cracks as other defect 
types; Significant scale variations between defects 
result in frequent missed detections of small targets 
like potholes. To address these challenges while 
maintaining real-time detection capabilities, this 
paper proposes an enhanced RT-DETR-based 
model.  

III. METHODS 

A. RT-DETR Network 

RT-DETR is a Transformer-based real-time 
object detection model that employs an 
HybriDencoder to reduce computational 
redundancy through decoupled intra-scale 
interactions and cross-scale fusion, while 
maintaining detection accuracy. By eliminating 
post-processing operations like non-maximum 
suppression (NMS), the algorithm achieves 
enhanced inference efficiency and fully leverages 
end-to-end advantages. Given the requirements for 
low computational overhead and high real-time 
performance in pavement defect detection tasks, 

this paper selects the relatively lightweight RT-
DETR-r18 as the baseline model. The overall 
network architecture is illustrated in Figure 2. 

 

Figure 2.  RT-DETR-r18 model structure 

The model comprises three core components: 
Backbone, HybridEncoder, TransformerDecoder. 
RT-DETR adopts ResNet18 [12] as its backbone - 
a classical deep residual network characterized by 
shallow architecture and robust performance. 
Through residual blocks implementing cross-layer 
connections, ResNet18 effectively mitigates 
vanishing gradient issues. The hybrid encoder 
consists of two specialized modules: the Attention-
based Intra-scale Feature Interaction (AIFI) 
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module and the CNN-based Cross-scale Feature 
Fusion (CCFM) module. 

The input image first undergoes multi-scale 
feature extraction through the backbone network. 
High-level semantic features from the S5 layer are 
then flattened and processed by the AIFI module 
with positional encoding. Multi-head attention 
mechanisms execute intra-scale feature 
interactions within AIFI, with the output 
subsequently reshaped into 2D features (denoted as 
F5) for cross-scale fusion. The CCFM module 
inserts convolutional Fusion Blocks into the fusion 
path to integrate adjacent-scale features. Finally, 
IoU-aware queries select fixed-length features 
from the encoder's output sequence as initial object 
queries for the decoder. These queries are 
optimized through auxiliary pre-detection heads to 
generate final class predictions and bounding boxes. 
The representation process is: 

       5Q K V Flatten S    (1) 

   5  , ,F reshape Attn Q K V  (2) 

    3, 4, 5{ }Output CCFM S S F  (3) 

Among them, flatten denotes the flattening 
operation, Attn refers to multi-head self-attention, 
and reshape represents the process of restoring 
features to the same shape as S5. 

B. Improving RT-DETR Network 

The improved model utilizes a more lightweight 
network compared to ResNet18 for shallow feature 
extraction, achieving a larger effective receptive 
field to capture long-range semantic information. 
The input image generates four-scale feature maps 
S2, S3, S4, and S5 through the backbone network. 
Among them, the S5 feature is encoded into F5 
within the original model's AIFI module. S2, S3, 
S4, and F5 are then fed into an enhanced small-
object feature pyramid fusion network. The 
upsampled F5 feature map is concatenated with the 
S4 feature map along the channel dimension. The 
resulting output is upsampled again and 
concatenated with the S2 feature map processed by 
SPDConv along the channel dimension. The final 
output undergoes EFKM processing to generate a 
feature map containing small-scale information. 
Through a series of multi-scale feature fusions, the 
model ultimately produces a comprehensive 
feature map with effective information across all 
scales, which is then input into the decoder.

 

Figure 3.  Improved RT-DETR model structure 
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C. LMBANet 

The coexistence of multiple pavement defects 
often leads to model misdetections across various 
damage types. For instance, in complex scenarios, 
there exists significant similarity between alligator 
cracks and transverse cracks, as illustrated in Figure 
4. Such cases may cause misclassification between 
crack types, subsequently affecting maintenance 
crews' root cause analysis and targeted repair 
strategies. To address this challenge, we integrate 
GELAN with Dilated convolution principles to 
design a Long-range feature extraction backbone 
network. 

 
Figure 4.  Diagrams of different types of cracks 

GELAN [13] is an efficient aggregation network 
combining CSPNet architecture with gradient path 
optimization, enabling effective propagation and 
integration of multi-level feature information. The 
network partitions input feature tensors into two 
streams: one preserves original features through 
identity mapping, while the other undergoes multi-
layer convolutional operations to extract higher-
level abstractions. These streams are concatenated 
through multi-stage channel-wise fusion. 

The Dilated Re-param Block (DRB) [14] 
enhances feature representation through a re-
parameterization mechanism based on dilated 
convolutions. During training, the module employs 
a 7×7 non-dilated convolution layer parallel with 
three dilated convolutional branches {kernel 
sizes=5,3,3, dilation rates=1,2,3}. Outputs from 
these branches are batch-normalized and 
aggregated additively. During inference, re-
parameterization converts the entire structure into 
an equivalent single non-dilated convolution layer, 
eliminating computational overhead from auxiliary 
branches. 

 
Figure 5.  Structure of LMBA module 

We integrate DRB into GELAN's branch 
pathways to create a Long-Road Multi-branch 
Aggregation Block (LMBABlock), as detailed in 
Figure 5. Replacing original feature extraction 
modules, DRB-enhanced branches capture multi-
receptive-field features. The aggregated multi-scale 
features from parallel branches enable long-range 
semantic understanding.  The input features first 
undergo channel and spatial dimension adjustment 
through a convolutional layer, before being 
processed by the LMBABlock to extract multi-
scale features with large receptive fields. These 
features are subsequently downsampled through the 
Adown [14] module - an innovative downsampling 
component that splits the input features into two 
parallel paths: one path employs stride-3 
convolution to preserve original structural 
information, while the other utilizes max pooling to 
extract salient features. Through the stacked 
configuration of LMBABlock and ADown 
modules, the complete backbone network 
architecture is constructed, as shown in the left 
portion of Figure 5. 

D. STEP 

Potholes, as typical small-scale targets in 
pavement damage detection, often suffer from 
information degradation during feature propagation 
from shallow to deep layers. Due to the inherent 
locality of feature mapping and varying receptive 
field scales across network depths, fine-grained 
details in abstract feature maps are progressively 
weakened, leading to frequent missed detections of 
small targets. Figure 6(a) illustrates the original 
cross-scale fusion network in RT-DETR, which 
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constructs top-down and bottom-up feature 
pyramid pathways for multi-scale interactions. 
However, this interaction initiates from the P3 
detection layer, inherently limiting the model's 
capacity to preserve small-scale semantic 
information. Traditional improvement approaches, 
as shown in Figure 6(b), address this by adding a P2 
small-target detection layer, but inevitably 
introduce excessive computational overhead. To 
resolve this dilemma, we propose an small-target 
enhanced feature pyramid architecture specifically 
optimized for small targets, depicted in Figure 6(c). 
The P2 feature map first undergoes SPDConv [15] 
to enrich small-target representations, then employs 
our improved EFKM (Efficient Full Kernel Module) 
derived from OmniKernel [16] Module for efficient 
feature consolidation while maintaining 
computational efficiency. 

 
Figure 6.  Comparison of feature Pyramid net 

The SPDConv module comprises a Space-to-
Depth (SPD) layer followed by a non-strided 
convolution layer, with its architectural details 
illustrated in the lower section of Figure 3. The SPD 
layer reduces the spatial dimensions while 
expanding the channel dimensions of the input 
feature map, effectively preserving spatial 
information without loss. After processing through 
SPDConv, the resulting P2-level feature maps 
undergo cross-scale fusion with P3 and P4 features 
within the EFKM to integrate multi-resolution 
representations. 

 
Figure 7.  Structure of EFKM module 

The EFKM (Efficient Full Kernel Module) 
architecture is illustrated in Figure 6. Given input 

features X∈RC×H×W from the OKM (Omni-

Kernel Module), the features undergo 1×1 
convolutional processing before being distributed 
to three parallel branches: the local branch, large 
kernel branch, and global branch, which 
collectively enhance multi-scale representations. 
The outputs from these branches are aggregated 
through element-wise summation and subsequently 
modulated by another 1×1 convolution. 

The large kernel branch employs a 
computationally efficient large-kernel depthwise 
convolution (K×K) to capture extensive receptive 

fields. Complementing this, parallel 1×K and K×1 

depthwise convolutions are utilized to extract strip-
shaped contextual information. To address the 
limitation of large kernels in achieving global 
coverage, the global branch incorporates a Dual-
domain Channel Attention Module (DCAM) and a 
Frequency-based Spatial Attention Module 

(FSAM). For input features XGlobal∈RC×H×W, the 

DCAM first applies Frequency Channel Attention 
(FCA), expressed as: 

 

      FCA Global GlobalX IF F X Conv GAP X (4) 

Where F and IF denote Fast Fourier Transform 
(FFT) and its inverse, respectively. The operator  

⊙ represents element-wise multiplication, while 

GAP and Conv indicate global average pooling and 

1×1 convolution. Optimized features from FCA 

are then fed into the Spatial Channel Attention 
(SCA) module as described in equation: 

   DCAM FCA FCAX X Conv GAP X  (5) 

Here, XDCAM represents the output of DCAM. 
Following channel-wise enhancement, FSAM 
performs fine-grained spectral refinement in the 
spatial dimension through frequency-based 
attention mechanisms, formally defined as: 

 ( 1 2)FSAMX IF W W  (6) 

  { }1   DCAMW F Conv X  (7) 
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Where W1 and W2 derive from frequency-
domain and spatial-domain transformations of 
XDCAM, respectively. This enables the module to 
prioritize frequency components carrying critical 
semantic information. In addition to the large kernel 
branch for extended receptive fields and the global 
branch for full-scale coverage via dual-domain 
processing, a lightweight local branch supplements 
local detail preservation through a simple 1×1 
depthwise convolution. 

IV. EXPERIMENTS 

A. Experimental Environment 

Table Ⅰ shows the experimental environment in 
this paper, which is based on the Ubuntu 18.04 
operating system, the graphics card model is 
RTX4090D, and the memory is 24GB. The 
experiment basically uses the parameters 
recommended by RT-DETR, builds the model 
based on Python3.9 and Pytorch1.13.1 framework, 
and uses the standard SGD optimizer, with batch-
size set to 8 and epochs set to 150. 

TABLE I.  EXPERIMENTAL  ENVIRONMENT 

Experimental environment Version 

CPU Intel Xeon Platinum 8352V 

GPU NVIDIA GeForce RTX4090D 

Language Python3.9 

Deep Learning Framework Pytorch1.13.1 

CUDA 11.6.0 

B. Dataset 

In this experiment, we utilized the publicly 
available RDDC2020 [17] dataset provided by the 
Global Road Damage Detection Challenge. The 
original RDD2020 dataset comprises 26,336 road 
images collected from India, Japan, and the Czech 
Republic. To better align with domestic road 
surface environments, a subset of 9,600 images 
demonstrating similar characteristics to Chinese 
pavement conditions was carefully selected for our 
study. Following standard experimental protocols, 
the dataset was partitioned into training and testing 
sets, with 80% allocated for training purposes and 

the remaining 20% reserved for testing. The 
quantitative distribution of different damage 
category labels is systematically presented in Table 
2, illustrating the sample statistics across various 
defect types. 

TABLE II.  DISEASE CATEGORY 

Category Train Set Test Set 

D00(Longitudinal cracks) 7419 876 

D10(Transverse cracks) 5702 636 

D20(Alligator cracks) 6244 689 

D40(Potholes) 2316 248 

C. Evaluation Metrics 

In this study, the following evaluation metrics 
were adopted: precision (P), recall (R), average 
precision (AP), mean average precision (mAP), 
model parameter count, and computational 
complexity measured in Giga Floating-point 
Operations Per Second (GFLOPs). The mAP metric, 
one of the most widely used benchmarks for object 
detection performance, is derived from the 
precision-recall relationship. Its calculation 
procedure follows the equations below [18]: 

    /P TP TP FP   (9) 

    /R TP TP FN   (10) 

 
1

0
( ) ( )AP P R d R   (11) 

 
1

1 n

i

mAP APi
N 

   (12) 

Where TP denotes true positives (correctly 
detected positive samples), FP represents false 
positives (negative samples erroneously classified 
as positive), FN indicates false negatives (positive 
samples misclassified as negative), N is the total 
number of damage categories, and APi denotes the 
detection accuracy for the ii-th category, calculated 
through precision-recall integration. 

Parameter count quantifies model size, while 
computational complexity (GFLOPs) evaluates the 
arithmetic operations required during inference. 
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Models with lower parameter counts and 
computational demands are prioritized for 
lightweight deployment scenarios, as they reduce 
hardware resource requirements while maintaining 
detection efficacy. 

D. Algorithm verification results 

The detection performance comparison between 
RT-DETR and its improved variant on the test set 
is systematically summarized in Table 3. 

TABLE III.  COMPARISON BEFORE AND AFTER 

IMPROVEMENT 

Algorithm Pars/M FLOPS/G FPS/f/s mAP/% 

RT-DETR 19.8 57.3 69 67.1 

Improved RT-DETR 14.6 45.2 60 69.2 

As evidenced by the quantitative results, the 
enhanced model demonstrates superior detection 
accuracy across all damage categories, achieving a 
3.8 percentage point improvement for small-target 
D40 potholes, along with 3.2 and 2.2 percentage 
point gains for easily confounded D10 and D20 
defects under complex scenarios. The overall mean 
average precision (mAP) shows a marked 
enhancement, while model parameter count and 
computational complexity are reduced by 29% and 
10%, respectively, compared to the baseline. 
Although the frames per second (FPS) slightly 
decreases from 69 to 60, this operational speed 
remains well above the 30 FPS threshold required 
for practical road damage detection systems 
deployed on vehicular or drone platforms. 
Although the frames per second (FPS) slightly 
decreases from 69 to 60, this operational speed 
remains well above the 30 FPS threshold required 
for practical road damage detection systems 
deployed on vehicular or drone platforms. 

 
Figure 8.  Comparison chart of mAP during training 

 

Figure 9.  Average precision of each label in RT-DETR 

 

Figure 10.  Average precision of each label in Improved RT-DETR 

Figures 8-10 provide detailed performance 
analyses: Figure 8 contrasts the mAP evolution 
during training between the original and improved 
models, while Figures 9 and 10 visualize their 
precision-recall characteristics on the test set. The 
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baseline RT-DETR's suboptimal detection of 
transverse cracks and potholes stems from its 
limited receptive field, which frequently 
misclassifies transverse cracks as reticular 
counterparts. In contrast, the enhanced architecture 
strategically integrates local texture patterns with 
global semantic contexts through multi-scale 
feature fusion, thereby acquiring significant 
advantages in small-target recognition and spatial 
relationship modeling.  

Figure 11 presents the detection outcomes of the 
algorithm before and after improvement in different 

scenarios of the selected dataset. From left to right, 
the scenarios are normal conditions, color 
interference, dense diseases, dense small targets, 
and low - light conditions. As can be seen from 
Figure 11, the algorithm improved by introducing 
the enhanced small-object feature pyramid network 
managed to identify the tiny potholes that RT - 
DETR failed to detect in the dense small - target 
scenario. Moreover, in the dense - disease and color 
- interference scenarios, the improved algorithm did 
not mix up transverse cracks with networked cracks.

 

Figure 11.  Visual comparison of test results  

E. Ablation experiment 

TABLE IV.  COMPARISON BEFORE AND AFTER 

IMPROVEMENT 

Experiments LMBAN STEP Pram/M FLOPs/G mAP/% 

Ⅰ   19.8 57.3 67.1 

Ⅱ    12.8 41.9 68.3 

Ⅲ   20.5 59.5 68.9 

Ⅳ   14.6 45.2 69.2 

The model improvement is based on the RT-
DETR architecture. To validate the effectiveness of 
each modification, ablation experiments evaluating 
detection accuracy and computational resource 
consumption were conducted using the dataset 
adopted in this study with results presented in 
Table 4. 

The original RT-DETR model's performance 
metrics are shown in the first experimental 
configuration. Replacing its backbone network 
improved model accuracy by 1.2 percentage points 
while reducing parameters by 35% and 
computational cost by 26%, demonstrating 
efficiency gains without sacrificing detection 
capability. Substituting the original CCFM 
structure with STEP increased mAP by 1.8 
percentage points compared to the baseline, 
indicating enhanced representation of small-scale 
features despite higher computational requirements. 
Combining both modifications achieved 2.1 
percentage point mAP improvement over the 
original model while reducing parameters by 26% 
and computational cost by 21%. 

F. Comparison experiment 

To further validate the superiority of the 
improved algorithm for pavement disease detection, 
comparative experiments were conducted between 

RT-DETR

ELSP-DETR
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the proposed algorithm and conventional object 
detection algorithms. All experiments were 
performed under identical software and hardware 
environments using the same dataset, with results 
presented in Table 5. 

Table 5 demonstrates that the improved 
algorithm achieves the highest accuracy among all 
compared methods. [19-20] Meanwhile, its 
parameter count and computational cost are 
significantly lower than those of other mainstream 
algorithms, enabling better adaptability of the 
model in edge device environments with limited 
computational resources. 

TABLE V.  COMPARISON BEFORE AND AFTER 

IMPROVEMENT 

Algorithm Pars/M FLOPS/G FPS/s/f mAP/% 

RT-DETR 19.8 57.3 69 67.1 

Yolov11m 20.1 68.0 107 67.9 

Fast-RCNN 136.5 370.2 21 50.2 

Improved RT-DETR 14.6 45.2 60 69.2 

V. COPYRIGHT FORMS AND REPRINT ORDERS 

This paper addresses the issues of high false 
detection rates in complex road damage detection 
scenarios and missed detection of potholes by 
improving the RT-DETR network model. We 
propose an efficient backbone network for long-
range semantic feature extraction to reduce 
computational overhead and mitigate false 
detections in complex environments. Additionally, 
a feature pyramid network incorporating Full 
Kernel modules and SPDConv is introduced to 
small-target enhanced feature pyramid network, 
specifically addressing the problem of missing tiny 
potholes. A series of experiments have 
demonstrated the effectiveness of the proposed 
algorithm. While the improved model shows 
enhanced detection performance, there remains 
room for optimization as it still exhibits relatively 
high computational complexity and parameter 
volume, along with decreased FPS compared to the 
original RT-DETR. Future work will focus on 

optimizing the model scale and improving 
detection speed. 
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